大气晕

Encyclopédie environnement - halos atmosphériques - couverture

  在地球的大气层中,光经常会形成一种只需用肉眼观察天空就可以欣赏到的 奇观,一般来说,大气光现象被称为大气光象,该词源于希腊语“photo”和 “meteora”,分别表示“光”和“在空气中的”[1]。由光与水滴相互作用产生的彩虹和日晕(参阅焦点《壮观的彩虹》和《布罗肯山的光谱》)便是众所周知的例子。冰晶也会产生被称为大气晕的大气光象。

  从词源学上讲,“光晕”指的是光环[2],即围绕在太阳、月亮或任何其他光源外部的光圈。大体来说,大气晕是强烈程度不同的光聚集在一起, 在天空中以点、圆或弧的形式出现,主要是由冰晶对光的折射和(或)反射形成。光晕种类繁多,其中一些比较常见的,另一些则十分罕见,甚至只有预测没有观察。有时光晕是彩色的,通过对光晕的观察,可以发现大气中冰晶的特性。

  对光晕的最初观测追溯到古希腊和古罗马时期,但直到 17 世纪,一种对于光的科学的方法(综合性、解释性和预测性)随着笛卡尔[3]和惠更斯[4]的研究得以发展。18 和 19 世纪进行了越来越多精确的观察,得益于阿拉戈、巴比内、布拉维、马里奥特、文丘里和杨等物理学家的详细研究。值得一提的是,19 世纪,布拉维斯的毕业论文通篇论述了大气晕[5]

1. 冰的一些基本性质

环境百科全书-大气晕-大气光晕
图1. 形成大部分大气光晕的四种晶体形式。其基本结构是正六边形,有时会添加像金字塔 一样的多面体。
(图中:cenary axis:百分位轴; Hexagonal plate:六角形板;Hexagonal column:六角形 柱; Column covered by a plate:被一个板覆盖的柱子;Column covered by a pyramid:被金 字塔覆盖的柱)

  尽管形状多种多样,四种类型的冰晶足以解释大多数的大气晕(图1):六角柱六角板柱顶覆小板和所谓的步枪子弹形状(柱顶覆金字塔)。这些晶体有着规则六边形的几何形状,表面或多或少的光滑面构成了光的屈光镜[20],并具有四个对称轴:三个共面轴(a)穿过六边形的顶点并两两形成120°的角,三元轴[6](c)垂直于六边形平面。

  大气中最小的晶体尺寸小于50微米,具有布朗(或随机)运动特性,因此没有优先取向。在 50 到 500 微米之间,重力和空气动力摩擦是主导力,因此空 气阻力最小的方向通常是有利的。超过这些尺寸的大晶体围绕水平轴旋转。这些 行为结合晶体的镜面反射[21]和折射[22],解释了光晕的多样性。需要注意的是,空气中同时存在着多种类型和大小的晶体, 因此不同的光晕经常同时出现在天空中,形成所谓的光晕系统。

  此外,两个折射率,一个沿a轴,另一个沿c轴,二者十分接近,从紫色略减为红色;平均值约1.31。这种变化解释了为什么由折射形成的光晕在原则上是彩虹色的。而彩虹色中红色、橙色和黄色的亮度比绿色、蓝色更加强烈,当然原因之一在于天空的背景是蓝色。

  尽管光晕数量众多,外观各异,但是可以通过以下几种方式进行分类:观测频 率、形状、折射和反射次数(内部或外部)、晶体取向程度以及大小。 上图是按形状进行分类。

2. 由随机和等概率方向小晶体产生的光晕

环境百科全书-大气晕-棱镜
图2. 22°(a)和 46°(b)形成光晕的棱镜。入射角记为 i,偏差为 D。 (图中:Light ray:光线)

  22°光晕—这是最常见的光晕(请参阅文章的封面图片)。它是一个圆环,以太阳为中心,角半径非常接近22°角宽度[23]约为1。内缘非常清晰,有时呈红色;外部却不那么简单,有时蓝色会拉向白色(封面图片)。所有这些特性均可用由六边形晶体的侧面变化所引起的光线偏差来解释,六边形晶体构成顶角60°的棱镜[7](图2a)。该偏差在22°附近达到绝对最小值,光聚集于此(参阅焦点《棱镜引起的光偏》)。非常多的棱镜呈现0到360°之间的等概率取向,因此光晕在天空呈现圆形[8]

  46°光晕—虽然与22°光晕类似,但这个更宽的光晕不太频繁更难观察,一方面因为光被重新分布在天空的大部分区域,另一方面因为不利的晶体高宽比。该光晕涉及形成直角棱镜的正交相邻面(图 2b);与这种棱镜对应的最小偏差为46° (参阅焦点《棱镜引起的光偏》)。卡文迪什最早对此提出了解释[9]

  不寻常的光晕—其他更罕见的光晕来自不同角度的棱镜。理论上讲, 所有0到99.5°之间的值都有可能,角半径在 0 到 80°之间的光晕都可观察(参阅焦点《棱镜引起的光偏》)。实际而言,只观察到 4°到 50°之间的光晕:范 · 布仁(8°)、海登(14°)、霍尔(17°)、杜泰尔(24°)、沙纳尔(28°)、 傅叶(32°) 和伯尼(45°) 。这些不寻常的光晕来自形状更复杂的晶体形成的棱镜:金字塔形(图 1)可以解释其中的一些角度;对于沙纳尔光晕来说,来自一种非常罕见的八面体晶体[10]。最后,90°被称为赫韦利乌斯晕(1661),几乎观察不到,而且不能用棱镜来解释。

  要注意区分光晕和日冕的一个技巧, 日冕与上述的光晕一样, 也是圆形大气光象: 当观察者从中心移开时,光晕从红色变为紫色;日冕则相反,因为是由光的衍射引起的。

3. 中等尺寸晶体产生的光晕

环境百科全书-大气晕-幻日
图3. 由天空成像仪 (LOA)于 2012 年 6 月 12  日 13 点 54 分在维伦纽夫拍摄到的大约
22°的幻日。

  幻日—幻日[11]或称假太阳,是一个与太阳高度相同且有一定角度距离的光点。有时成对地出现在太阳的对称的两侧[12] [13]

  幻日常常出现22°光晕附近。封面图片上伴随22°光晕,两个明亮的光点对称地分布在太阳两侧。它的形成离不开 60°的棱镜,但棱柱的边缘是垂直的, 就像三级轴一样。方向是决定性的,因为入射光线相对于晶体的主要水平截面是倾斜的,穿过晶体后,集中在大于 22°的方位角距离(布拉维定律)[14]。这就是为什么在远离太阳时幻日在水平方向上传播(图3);只有当太阳在地平线上很低,幻日才会被附着在 22°的光晕上。此外,幻日是有颜色的,红色比蓝色更靠近光晕(图 4)。

环境百科全书-大气晕-彩色幻日
图4. 彩色幻日(红、黄、绿、蓝)。幻日的尾部非常大, 以至于人们可以猜出幻日的圈。
照片是作者于 2015 年 11 月 9  日, 7 点 30 分(焦距 78 毫米, 曝光 1/500)在维伦纽夫拍
摄。

  更为罕见的一些幻日距太阳的方位角绝对值超过90°。最著名的例子是±120°°;后者是无色的。它们是在晶体垂直的表面上偶数次内反射和在平行表面 上的折射产生的(图 5)。1951年由瑞典气象学家利里奎斯特[15]在南极洲发现了介于 150°到 160°之间的幻日。它们有时被称为偏阳星,因为它们位于面向太 阳的点(方位角 180°) 的两侧, 称为反日点(“反”的意思是“相反”)。在这一点上,一个非常罕见的,未着色的光晕可能出现,其形成过程尚不确定。

  出现在水平线上的幻日和光源被称为almicantarat(法语,地平纬圈);后者具体化为称作幻日圆[16]的完整或部分的白色光圈,如果光在没有特殊方位的垂直面上反射。幻日有时垂直传播,形成所谓的幻日弧;产生于垂直方向上可能存在的小波动。

环境百科全书-大气晕-120°处形成幻日
图5. 在 120 °处形成幻日的例子。
(图中:Perspective view:透视图; View from above:从上面看)

  光柱—当太阳刚好位于地平线上方时,就会出现这些狭窄的垂直带。呈现出与光源相同的颜色,由相对于垂直方向略微倾斜的三级轴晶体底部掠入射的反射形成。当方向完美时,光柱薄而明亮;任何对垂直排列的偏离都会使光柱变宽并降低亮度。从飞机上可以看到太阳下的光柱。

环境百科全书-大气晕-弧的形成
图6. 弧的形成
(图中:Formation of acircumzenithalarc:环天顶弧的形成;Formation of acircumhorizontal arc:环地平弧的形成;Formation of the Kern arc:克恩弧的形成)

  环天顶弧和环地平弧—朝向天顶或地平线时,这些互补的弧是明亮的,从红色到蓝色呈彩虹色。它们由具有垂直 c 轴和水平 c 轴的直角棱镜的边缘晶体形成,可伴随 46°光晕一起出现。如果光从上表面进入晶体并从垂直表面出射,则弧是环天顶弧(或布拉维弧,图 6);如果光从垂直表面进入并从下表面出射,则弧是环地平弧(图 6)。前者(图 7)部分围绕天顶,并且仅在太阳高度角小于 32°时出现。若大于 32°,则反射全部发生在晶体的内垂直侧面。在32°, 半径出现掠食, 所以是垂直的,环天顶弧成为一个亮点出现在天顶。太阳高度为 22°时,弧线最亮;出现时会于 46°处接触光晕。环地平弧部分围绕地平线,因此可能受景观掩盖,也会于 46°处接触光晕:仅当太阳高度角大于 58°  时环地平弧才会存在,并且在太阳高度角为68°时发光最亮[17]

环境百科全书-大气晕-环天顶弧
图7. 环天顶弧 [图片来源:©埃尔维 ·赫尔宾, 大气光学实验室(LOA), 里尔]

  在环天顶弧的前面, 我们有时会看到一条以天顶为中心的完整的圆弧:克恩弧。形成于光线穿过相对的垂直面之前的内部反射(图 7)。

  帕利弧—由水平c轴晶体形成,具有成对的相对面,也是水平的。它们处在22°光晕上方下方,凹面朝向光晕;成对出现,但却混成一团。帕利弧以英国海军上将威廉 · 爱德华 · 帕利爵士[18]的名字命名,他在19世纪初探索了北极并在游记中描述了许多光晕。

  映日—飞机上有时可以看到地平线下的椭圆形光点,与太阳对称;那就是日下晕,由水平冰晶面反射阳光而形成的。如果晶体排列得很整齐,在太阳下就是圆形的。这个光环偶尔会被称作布林结环的光环所覆盖。

4. 大晶体产生的光晕

  大晶体旋转时,会形成罕见而复杂的光晕,外观在很大程度上取决于太阳的高度。这些弧线,横向正切于光晕,有些呈 22° , 而有些呈 46°。由于通过折射形成的,所以原则上呈现彩虹色。

  光环外切到22°光晕—当太阳接近地平线时,在 22°光晕的上方和下方,形成两条与之相切的弧线。当太阳从天空中升起时,两条拱形线会随着相互靠近而变长;当太阳高度角达到 30°时,它们环绕在 22°光晕处。随着太阳继续上升, 这个光环缩小,变得对称, 并最终在太阳高度为 70°处与光晕合并;弧线由 60°棱柱和水平 c 轴围绕旋转而形成。

环境百科全书-大气晕-天球上的光晕
图8. 天球上的光晕。图示用于说明目的,不考虑它们的外观条件。
(图中:Almicantarat:Sphèrecéleste:天球; Zénith:天顶;halo circonscrit:Plan
horizontal:水平面;Horizon:地平线;observateur:观察员;A=anthélie:幻日;ACZ=arc circumzénithal:环天顶弧;ACH=arccircumhorizontal:环地平弧;Li, Lm et Ls=arcs de
Lowitz infralatéral,mesolatéralet supralatéral:下, 中外侧和上外侧洛维兹弧;ph=parhélie: 幻日; Ps et Pi=arcs de Parry supérieuretinférieur:上下帕利弧; S=Soleil:太阳)

  洛维兹侧弧—三条弧线22°处穿过幻日点:上侧弧和下侧弧分别位于太阳上方和下方;中外侧弧垂直穿过幻日。1790 年,德俄化学家托拜厄斯 洛 维兹[19]在圣彼得堡首次观察到洛维兹。这些弧是由绕 a 轴旋转的板状冰晶面组成的 60°角棱镜形成的。

  46°处的晕的切线和侧弧—棱镜为90°。切线弧通过很多数值模拟得到预测;侧弧(上侧和下侧)拍到的不多,十分少见。

5. 影响参数

  到目前为止,我们已经考虑了表面光滑的规则几何形状的晶体,晶体由一个点光源照亮,可以运用著名的几何光学定律加以分析。如果现实真的如此简单,应该可以看到更多的光晕。但事实上,云并不总是均质的晶体介质,通常由于具有散射光的粗糙表面、不规则的几何形状、对称缺陷和内部杂质(气溶胶、气泡) 干扰甚至破坏光晕的形成。

  冰晶密度也很重要:光路通过几个晶体的过程中可能连续发生改变;形成多重散射,例如造成+/-44°的幻日现象(光束在±22°处被两个冰晶偏转两次)。此外,光源(太阳、月亮) 较宽;每个点源都有自己的光圈系统。后者重叠并由此产生 的光晕看起来更宽、更不清晰,并且颜色变淡。最后,对于小晶体来说,经常发生的衍射也会使光晕变得更宽、更加不清晰并且颜色更淡。因此,对光晕的观察可以揭示关于云的均匀程度及其组成晶体的特征的大量信息。

  光晕研究涉及到大气光学、气象学和冰晶学等各方面。它的种类及其性质取 决于冰晶的几何形状和它们在空间中的方向角度。其中一些光晕原因仍然不确定, 甚至无法解释;比如,椭圆光晕和位于太阳和 22°光晕上部之间的莫拉宁“V”弧。光晕为我们揭示了哪些关于冰晶的信息?反过来,给定的冰晶几何形状可以形成哪些光晕?最后,其他行星会看到光晕吗?数值模拟观测是回答这些问题的关键。希望这篇关于地球光晕特征的文章会激发读者对这些美丽的大气光学现象 的好奇心,受到鼓舞去仰望天空。愿我们每个人都是细心的观察者,拥有敏锐的头脑,因为我们都是光晕的潜在探索者!

 


参考资料及说明

封面图片:22°虹彩光晕 (内边缘清晰, 红色,外边缘更弥散,蓝色) 。图片来源:埃尔 维 ·赫尔宾(大气光学实验室(LOA), 里尔)。

[1] A. Rey:法语历史词典。埃德 ·勒罗伯特(2012),4200 页(本文所有词源注释均出自该 词典。)

[2] “halo”一词来源于希腊语“halôs”,指的是小麦被打磨以将谷物从捆中分离出来的区域(圆 盘), 由此延伸出一个圆形的表面, 然后是一个光环。

[3] 笛卡尔:屈光度。流星。在“方法的话语, 正确地引导理性, 在科学中寻求真理” 中, 1637, Ed. de Ch. Angot, Paris, 1668。

[4] 克里斯蒂安惠更斯的完整作品:冠和假日的处理。1662 年或 1663 年。荷兰科学学会,第 17 卷。

[5] 布拉维斯, 1847:晕回忆录和伴随它们的光学现象。皇家理工学院杂志,卡希尔 39 号, XVIII,巴黎。该文章并没有真正过时, 它在观察和理论解释方面提供了非常详细的描述, 并包含了大量的历史参考文献。

[6] 这个轴被称为六元轴,因为晶体以相同的结构绕这个轴 360°旋转六次。

[7] 这个棱镜的解释是由于玛丽奥特:玛丽奥特的作品,《沙发上的肖像》,1686 年。

[8] 这是居里原理的一个例证,根据该原理,结果(光晕几何)至少具有原因的对称性(晶 体取向的等概率)。

[9] 根据 T. Young,这是一门关于自然哲学和机械艺术的讲座课程。1807,卷 II,308 页(“卡 文迪什先生很可能会这么说 ……” )。

[10] 惠利, 1981,沙纳尔光晕:大气中含冰的证据. Science, 211, 389-390

[11] 希腊语“para”和“helio” 的意思是“近”和“太阳”。

[12] 参见历史文本:BravaisA.,1845:注意位于与太阳相同高度的幻日。皇家理工学院杂志,卡希尔 30 号,XVIII,巴黎。

[13] 如果光源是月亮,我们就会说 paraselene (Selene 是希腊神话中的满月女神)。

[14] 布拉维定律涉及入射角度倾斜的光束的折射,即相对于晶体主截面的平面形成非零角 θ。 有两条法则:(1)入射半径和出射半径都是倾斜的(倾角 θ 不变);(2)投射在主截面平 面上的入射半径按照斯涅尔- 笛卡儿定律发生偏转,仿佛它遇到了折射率为[1 + (n²-  1)/  cos²θ]1/2 的棱镜

[15] 利里奎斯特, 光晕现象和冰晶体,在挪威-英国-瑞典南极考察队,1949-52,科学结果, 第二卷,第 2A 部分, 奥斯陆,1956.

[16] 这个名字是因为巴比内(巴比内 1837:气象学备忘录,科学院,638-648)。

[17] 58°和 68°与 32°和 22°互补: 90°- 32° = 58° , 90°- 22° = 68°。

[18] 帕里,《发现从大西洋到太平洋的西北航行杂志》; 1819- 1820 年, 在国王陛下的赫克拉和格里珀船…… 附录包含科学和其他观察的内容……伦敦(1821)。

[19] 洛维兹,1794,关于 1790 年 6 月 18  日在圣彼得堡观测到的一颗非凡的流星的描述。帝国石油新学院, 8384-388。

[20] 两种具有不同光学性质的介质之间的分离表面。

[21] 根据笛卡尔定律,入射光束的反射只在一个方向上进行。如果光束向几个方向反射,则称该反射为漫反射。

[22] 光通过折光面时的偏差。

[23] 角距离(半径、宽度、尺寸等) 是一个圆的中心点(或角度的顶点) 和观察者所在点之间的夹角。我们也说到了明显的距离。


环境百科全书由环境和能源百科全书协会出版 (www.a3e.fr),该协会与格勒诺布尔阿尔卑斯大学和格勒诺布尔INP有合同关系,并由法国科学院赞助。

引用这篇文章: PUJOL Olivier (2024年3月4日), 大气晕, 环境百科全书,咨询于 2024年12月24日 [在线ISSN 2555-0950]网址: https://www.encyclopedie-environnement.org/zh/air-zh/atmospheric-halos/.

环境百科全书中的文章是根据知识共享BY-NC-SA许可条款提供的,该许可授权复制的条件是:引用来源,不作商业使用,共享相同的初始条件,并且在每次重复使用或分发时复制知识共享BY-NC-SA许可声明。

Atmospheric halos

Encyclopédie environnement - halos atmosphériques - couverture

In the Earth’s atmosphere, light often offers a spectacle that can be appreciated simply by looking at the sky with the naked eye. In a generic way, atmospheric light phenomena are called photometeors, from the Greek words “photo” and “meteora” which mean respectively “light” and “which is in the air” [1]. The rainbow and the glory (read the focuses Spectacular Rainbows and Brocken’s Amazing Spectrum), which result from the interaction of light with water drops, are well known examples. Ice crystals also produce photometeors called atmospheric halos. Etymologically, the term “halo” refers to an aureole [2], viz., here, a luminous circle surrounding the Sun, the Moon or, possibly, any other light source. Broadly speaking, an atmospheric halo is a more or less strong accumulation of light, appearing in the sky as a spot, a circle, or an arc, which is mainly due to the refraction and/or reflection of light by ice crystals. There is a wide variety of halos, some of them are frequent, while others are much rarer and often only predicted. Sometimes coloured, their observation informs us about the properties of ice crystals in the atmosphere.

The first observations of halos date back to Antiquity, but it was not until the 17th century that a scientific approach (synthetic, explanatory and predictive) is developed with the work on Optics by Descartes [3] and Huygens [4]. A boost is then given in the 18th and 19th centuries with more and more precise observations and thanks to detailed studies by physicists such as Arago, Babinet, Bravais, Mariotte, Venturi and Young. It is worth mentioning that Bravais is the author of a complete thesis [5] on atmospheric halos known in the 19th century.

1. Some essential properties of ice

atmospheric halos
Figure 1. The four forms of crystals responsible for the majority of atmospheric halos. The basic structure is that of a regular hexagon. Sometimes polyhedra like pyramids are added.

Despite the great variety of their shapes, four types of crystals are sufficient to explain the majority of atmospheric halos (Figure 1): the hexagonal column and plate, the column capped with a platelet and the so-called rifle bullet shape (a column capped by a pyramid). These crystals have a regular hexagonal geometry, with more or less smooth faces that constitute diopters [20] for light and have four axes of symmetry: three coplanar axes (a) passing through the vertices of the hexagon and forming two by two an angle of 120⁰, then the senary axis [6] (c), which is perpendicular to the hexagonal plane.

In the atmosphere, the smallest crystals, smaller than about 50 microns in size, have a Brownian (or random) motion and therefore do not have a preferential orientation. Between 50 and 500 micrometers, the gravity and the aerodynamic friction are the dominant forces and so the orientation that offers the least air resistance is generally favoured. Beyond these sizes, the large crystals whirl around a horizontal axis. These behaviours, combined with specular reflections [21] and refractions [22] by crystalline faces, explain the halos diversity. It should be noted that several types and sizes of crystals coexist in the air; different halos then often appear simultaneously in the sky and form what is called a halo system.

Furthermore, the ice has two refractive indexes, one along the a-axis and the other along the c-axis, which are very close from each other and slightly decrease from the purple to the red; their average value can be taken at about 1.31. This variation explains why halos formed by refraction are, in principle, iridescent. However, the red, the orange and the yellow are more intense than the green and the blue, at least for the obvious reason that the sky background is blue.

Although they are numerous and of different appearances, they can be classified in several ways: frequency of observation, shape, number of refractions and reflections (internal or external), degree of crystal orientation or, what amounts to the same thing, their size. It is this last possibility that is adopted here.

2. Halos produced by small crystals of random and equiprobable orientations

Figure 2. Prisms involved in the formation of the halo at 22⁰ (a) and the halo at 46⁰ (b). The angle of incidence is noted i and the deviation D.

Halo at 22° – This is the most common (see the cover image of the article). It is a ring, centred on the Sun, with an angular radius very close to 22° and an angular width [23] of about 1 to 2°. Its inner edge is very clear, sometimes reddish, while its outer part is less frank and sometimes tinted blue pulling towards white (cover image). All these properties are explained by the deviation of light by the alternating lateral faces of a hexagonal crystal which constitute a prism of top angle 60° [7] (Figure 2a). This deviation reaches an absolute minimum around 22° where light accumulates (read Focus on Deviation of light by a prism). Due to the very large number of prisms presenting equiprobable orientations between 0 and 360°, the halo appears circular in the sky [8].

Halo of 46° – Similar to the previous one, this wider halo is however less frequent and more difficult to observe, on one hand because the light is redistributed over a larger portion of the sky and, on the other hand, because of unfavourable crystal height/width ratios. This halo involves orthogonal adjacent faces that form a right-angled prism (Figure 2b); the minimal deviation corresponding to such a prism is 46° (see Focus on Deviation of light by a prism). This explanation was initially suggested by Cavendish [9].

Unusual Halos – Other but rarer halos involve prisms from different angles. Theoretically, all values between 0 and 99.5° are possible, and so halos with an angular radius between 0 and 80° (read Focus on Deviation of light by a prism) can be observed. In practice, halos between 4° and 50° were observed: the halos of Van Buijsen (8°), Heiden (14°), Hall (17°), Dutheil (24°), Scheiner (28°), Feuillée (32°) and Burney (45°). These unusual halos are derived from prisms formed by crystals of more complex shapes: the pyramid (Figure 1) can explain some of these angles; for the Scheiner halo, it would be a very rare crystal with octahedral geometry [10]. Finally, let us mention the 90° halo, known as the Hevelius halo (1661), very little observed, which cannot be explained by means of prisms.

Note a trick to distinguish a halo from a corona which, like the halos above, is also a circular photometeor: as one moves away from the centre, the iridescence goes from red to purple for a halo; it is the opposite for a corona, because it is due to light diffraction.

3. Halos produced by intermediate size crystals

Encyclopedie environnement - halos atmospheriques - Parhelies etendus autour de 22⁰ - parhelies
Figure 3. Parhelies extended around 22⁰ photographed by a sky imager (LOA) on 06/12/2012 at 13h54 in Villeneuve d’Ascq (59).

Parhelia – A parhelion [11], or false Sun, is a light spot located at the same height as the Sun and at a certain angular distance from it. They sometimes appear in pairs on either side of the Sun, symmetrically [12], [13].

The most common is close to the halo at 22°. We can see it accompanying the latter on the cover image, where two bright light spots are symmetrically arranged on each side of the Sun. Its formation involves the prism at 60° but whose edge is, this time, oriented vertically, like the senary axis. This orientation is decisive because the incident light rays are then oblique with respect to the main horizontal section of the crystal, which, after crossing it, concentrates the light at an azimuth distance greater than 22° (Bravais’ laws) [14]. This is why the parhelion spreads horizontally as it runs off the Sun (Figure 3); it is only when the Sun is low on the horizon that the parhelia are stuck to the halo at 22°. In addition, they are coloured, with red being closer to the halo than blue (Figure 4).

Encyclopedie environnement - halos atmospheriques - Parhelie colore - atmospheric halos
Figure 4. Coloured parhelion (red, yellow, green, blue). The tail of the parhelion is so large that one can guess the parhelic circle. Photo taken by the author on 11/09/2015, at 7h30 (focal length 78 mm, exposure 1/500) in Villeneuve d’Ascq (59)

Some parhelia, much rarer, are located at an azimuthal distance from the Sun of more than 90° in absolute value. The best known examples are ± 120° °; the latter are not coloured. They are produced by an even number of internal reflections on the vertical surfaces of the crystals and by refraction on parallel surfaces (Figure 5). A parhelion between 150° and 160° was discovered in 1951 by the Swedish meteorologist Liljequist [15] in Antarctica. They are sometimes called paranthelia because they flank the point facing the Sun (azimuth angle 180°) called anthelion (“anti” means “opposite”). At this point, a very rare, uncolored halo may appear, whose process of formation is not certain.

The horizontal line on which the parhelia and the light source are arranged is called almicantarat; the latter is materialized, totally or partially, by a white light circle called a parhelic circle [16] if the light is reflected on vertical faces without privileged azimuthal orientation. Parhelia are sometimes spread vertically and then form so-called parelic arcs; they are attributed to possible small swings around the vertical orientation.

Figure 5. Example of the formation of a parhelion at 120⁰.

Light columns or pillars – These narrow vertical bands appear when the Sun is just above the horizon. They present the same colour as the source, and they are formed by reflections with a grazing incidence on the underside of the crystals of the senary axis slightly inclined with respect to the vertical. With perfectly oriented crystals, columns are thin and bright; any deviation from vertical alignment widens columns and reduces their brightness. From an airplane, one can see pillars under the Sun.

arcing
Figure 6. Arcing.

Circumzenithal and circumhorizontal arcs – These complementary arcs are bright and iridescent from the red to the blue as they progress towards the zenith or the horizon, respectively. They are formed by crystals with a vertical c-axis and a horizontal edge of the right-angle prism. They can accompany the halo at 46°. If light enters the crystal from the upper surface and emerges from a vertical surface, the arc is circumzenithal (or Bravais Arc, Figure 6); if it enters from a vertical surface and emerges from the lower surface, the arc is circumhorizontal (Figure 6). The first (Figure 7) partially surrounds the zenith and only exists if the Sun is at an angular height less than 32°. Beyond that, the reflection is total on the inner vertical side surface of the crystal. At 32°, the radius emerges grazing, so vertically, and the circumzenithal arc then appears as a bright point at the zenith. The arc is brightest if the Sun is 22° high; it touches the halo at 46° if it is present. The circumhorizontal arc, which partially surrounds the horizon and can therefore be masked by the landscape, behaves in a similar way: it only exists if the angular height of the Sun is greater than 58° and shines brightest for a solar angular height of 68° [17].

Encyclopedie environnement - halos atmospheriques - Arc circumzenithal - atmospheric halos
Figure 7. Circumzenithal arc [Source : © H. Herbin, LOA, Lille]
In front of the circumzenithal arc, we sometimes see an arc that completes the circle centered on the zenith: the Kern arc. It is due to internal reflections of the light before emerging through an opposite vertical face (Figure 7).

Parry’s arcs – These arcs are formed by crystals of horizontal c-axis with pairs of opposite faces, also horizontal. They are placed above and below the halo at 22⁰, with the concavity facing the halo; they go in pairs, but appear confused. They are named after the British Admiral Sir William Edward Parry [18] who explored the Arctic in the early 19th century and described many halos in his travel notes.

Sub-sun – From an aircraft, one can sometimes see an elliptical light spot under the horizon, symmetrical to the Sun; it is a sub-sun. It results from the reflection of sunlight by horizontal crystal faces. The sub-sun is circular if the crystals are perfectly aligned. This halo is occasionally haloed with a ring called Bottlinger’s ring.

4. Halos produced by large crystals

As they rotate, the large crystals form rare and complex halos whose appearance is highly dependent on the altitude of the Sun. These are arcs, lateral and tangential to the halo at 22° for some of them and 46° for others. They are iridescent in principle since they are formed by refraction.

Halo circumscribed to the 22° halo – It appears, when the Sun is close to the horizon, in the form of two arcs tangent to the 22° halo at its upper and lower points. These two arches lengthen as they approach each other when the Sun rises in the sky; they circumscribe the halo at 22° when the Sun reaches 30° high. As the Sun continues its ascent, this halo shrinks, becomes symmetrical, and eventually merges with the halo at 22° (Sun at 70° height); it is formed by the 60° prisms of columns with horizontal c-axis and rotating around it.

Encyclopédie environnement - halos atmosphériques - Halos sur la sphère céleste - atmospheric halos
Figure 8. Halos on the celestial sphere. They are schematized here for illustrative purposes, without any concern whatsoever for their conditions of appearance.

Lowitz lateral arcs- There are three and they pass through the parhelion at 22°: the supralateral arc and the infralateral arc are respectively above and below the Sun; the mesolateral arc is vertical through the parhelion. It was the German-Russian chemist Tobias Lowitz [19] who first observed them in St. Petersburg in 1790. These arcs are formed by the 60° angle prisms made up of plates rotating about an a-axis.

Tangent and lateral arcs of the halo at 46°- This time it is the 90° prisms that are involved. Tangent arcs have been predicted by numerical simulations; lateral arcs (supra and infra) have been poorly photographed and are rare.

5. Influence of some parameters

Up to now, one has considered crystals of regular geometry with assumed smooth enough faces, illuminated by a point source, and one has used the well-known laws of geometric Optics. If reality were that simple, we would see more halos. In fact, a cirrus is not always a homogeneous medium of crystals, as they often have rough surfaces that scatter light, irregular geometries, symmetry defects and internal impurities (aerosols, air bubbles) that disturb or even destroy the formation of halos.

The ice crystal density is also important: the light path can be modified by several crystals successively; it is the multiple scattering, which is responsible, for example, for parhelia at +/- 44° (a light beam deflected twice at ± 22° by two crystals). In addition, the light source (Sun, Moon) is wide; each of its points gives its own halo system. The latter overlap and the resulting halo appears wider, less clear and with faded colours. Finally, diffraction, important for small crystals, also tends to widen halos and tarnish their iridescence. The observation of a halo therefore reveals a lot of information about the degree of homogeneity of a cloud and the characteristics of its constituent crystals.

Halos is a vast subject of atmospheric optics, coupled with meteorology and ice crystallography. The variety of halos and their properties depend on the geometry of the crystals and their degree of orientation in space. Some of them remain uncertain or even of unknown explanation; this is the case, for example, of the elliptical halos and the Moilanen “V” arc which is halfway between the Sun and the upper part of the halo at 22°. What information about the crystals these halos bring us? Conversely, given an ice crystal geometry, which halos can be formed? Finally, what about other planets? Numerical simulation and observation are essential to answer these questions. Let’s hope that this article about some features of Earth halos will have aroused the reader’s curiosity about these beautiful photometeors and will encourage him/her to look up to the sky. May everyone be an attentive observer and sharpen their physical minds. Because we are all potential halo discoverers!

 


References and notes

Cover photo: Halo at 22° iridescent (clear inner edge, red, and more diffuse outer edge, bluish). Source: Hervé Herbin (LOA, Lille)].

[1] A. Rey: Historical dictionary of the French language. Ed. Le Robert (2012), 4200 p. (All the etymological notes in this article come from this dictionary.)

2] The word “halo” comes from the Greek “halôs” which refers to the area (disc) where wheat is threshed to separate the grain from the bale, hence by extension a circular surface and then a halo.

[3] R. Descartes: The dioptric. The meteors. In “Discours de la méthode, pour bien conduire sa raison et chercher la vérité dans les Sciences”, 1637, Ed. de Ch. Angot, Paris, 1668

[4] Complete works by Christiaan Huygens: Treatment of crowns and parhelia (De coronis and parheliis). 1662 or 1663. Dutch Society of Sciences, Volume 17

[5] Bravais A., 1847: Memoir on halos and the optical phenomena that accompany them. Journal de l’École Royale Polytechnique, Cahier 39, XVIII, Paris. This thesis, which has not really aged, offers a very detailed description, in terms of observation and theoretical explanation, and contains a large number of historical references.

[6] This axis is called senary because the crystal is found six times in the same configuration by a 360° rotation around this axis.

[7] The explanation by this prism is due to Mariotte: Mariotte’s Works, Traité des couleurs, 1686

[8] This is an illustration of the Curie principle according to which consequences (halo geometry) have at least the symmetries of causes (equiprobabilities of crystal orientations).

[9] According to T. Young, A course of lectures on natural philosophy and the mechanical arts. 1807. Vol. II, p. 308 (” Mr. Cavendish suggested, with great probability, that… “).

[10] Whalley E. 1981, Scheiner’s Halo: Evidence for Ice in the Atmosphere. Science, 211, 389-390

[11] The Greek words “para” and “helio” mean “near” and “Sun”.

[12] See also the historical text: Bravais A., 1845: Notice on the parilia located at the same altitude as the sun. Journal de l’École Royale Polytechnique, Cahier 30, XVIII, Paris

[13] If the light source is the Moon, we speak of paraselenes (Selene is the goddess of the full moon in Greek mythology).

[14] Bravais’ laws concern the refraction of a light beam whose incidence is oblique, i.e. forms a non-zero angle θ with respect to the plane of the main section of a crystal. There are two laws: (1) The incident radius and the emerging radius are also inclined (preservation of the obliquity θ) ; (2) The incident radius projected on the plane of the main section is deflected according to Snell-Descartes law as if it met a prism of refractive index [1 + (n² – 1) / cos² θ ]1/2

[15] Liljequist, G. H., Halo-Phenomena and Ice-Crystals, in Norwegian-British-Swedish Antarctic Expedition, 1949-52, Scientific Results, Volume 2, Part 2A, Oslo, 1956

[16] This name is due to Babinet (Babinet 1837: Mémoire d’optique météorologique. Academy of Sciences, 638-648).

[17] The 58° and 68° angles are complementary to the 32° and 22° angles: 90°- 32° = 58° and 90°- 22° = 68°.

[18] Parry W.E., Journal of a Voyage for the Discovery of a North-West Passage from the Atlantic to the Pacific; Performed in the years 1819-’20, in His Majesty’s Ships Hecla and Griper … with an Appendix Containing the Scientific and Other Observations… London (1821)

[19] Lowitz T., 1794, Description of a remarkable meteor observed in St. Petersburg on June 18, 1790. Nova Acta Academiae Scientiarum Imperialis Petropolitanae, 8, 384-388

[20] Separation surface between two media with different optical properties

[21] The reflection of the incident beam is done in one and only one direction, in accordance with the Descartes laws. If the beam is reflected in several directions, the reflection is said to be diffuse

[22] Deviation of light when it passes through a dioptre

[23] An angular distance (radius, width, size, etc.) is the angle between two points of a circle whose center (or vertex of the angle) is occupied by the observer. We also speak of apparent distance


环境百科全书由环境和能源百科全书协会出版 (www.a3e.fr),该协会与格勒诺布尔阿尔卑斯大学和格勒诺布尔INP有合同关系,并由法国科学院赞助。

引用这篇文章: PUJOL Olivier (2019年7月16日), Atmospheric halos, 环境百科全书,咨询于 2024年12月24日 [在线ISSN 2555-0950]网址: https://www.encyclopedie-environnement.org/en/air-en/atmospheric-halos/.

环境百科全书中的文章是根据知识共享BY-NC-SA许可条款提供的,该许可授权复制的条件是:引用来源,不作商业使用,共享相同的初始条件,并且在每次重复使用或分发时复制知识共享BY-NC-SA许可声明。