Tropical Cyclones: impacts and risks

PDF

As the ruins of Tacloban in the Philippines show, after the passage of Typhoon Hayan in November 2013, cyclones, together with earthquakes, are the most devastating natural phenomena. Specialized meteorological services monitor them around the world to warn the populations concerned of the associated risks. But we still have to be well prepared for these terrible deadlines.

1. Impacts of tropical cyclones

Every year, cyclones, typhoons and hurricanes affect dozens of countries around the world. Losses of life and material damage are significant due to strong winds, heavy rains, large swells and storm surges. Hazardous phenomena are not only located on islands and coasts. Even mitigated, hurricanes often cause damages inland, through floods and landslides, sometimes hundreds of kilometres from the ocean.

Encyclopédie environnement - cyclones - Karnaphuli Bangla Desh
Figure 1. Flooding around the Karnaphuli River in Bangla Desh after the April 1991 cyclone.

Over the past 50 years, nearly one million people have died in tropical cyclones. The cause is the increase in populations in exposed areas, due to the attraction of the sun in rich countries, population growth elsewhere. In developed countries, the loss of human lives has decreased significantly as a result of improved forecasts. But at the same time, the average cost of devastation has risen sharply. The record is held by Hurricane Katrina, whose passage over New Orleans in August 2005 left a bill of at least €100 billion. In terms of human lives, the most affected regions were Bangladesh with the two hurricanes of November 1970 and April 1991, each claiming more than 200,000 lives, Honduras and Nicaragua with Mitch in October 1998, Burma in 2008 with Nargis ravaging the Irrawaddy Delta, the Philippines with Hayan in 2013, each causing tens of thousands of deaths.

Encyclopédie environnement - cyclones - ouragan Mitch - hurricane mitch
Figure 2. Cleaning of the streets of Tegucigalpa after the landslides caused by Hurricane Mitch in October 1998. [Source: http://s.hswstatic.com/gif/worst-hurricanes-10.jpg ]
The moisture collected by the wind on the ocean surface condenses to form precipitation. Within a radius of about 100 km around the eye, the accumulated rain amount is about ten centimetres per day, but values five to ten times higher are not uncommon for intense events, and in certain regions such as the eye wall or on mountainous areas. The arrival on land, whose surface is rougher than that of the ocean, causes a slowing of the wind and a strong convergence in the cyclone quadrant that approaches the coast. This makes upward movements more intense, accelerates moisture condensation and increases precipitation. In general, the eyewall weakens quite quickly after landfall. On the other hand, the external bands are more resistant to this transition and are often responsible for heavy rains inland.

Encyclopédie environnement - cyclones - ouragan katrina - hurricane katrina
Figure 3. Flooding in New Orleans after Hurricane Katrina in August 2005.

Hurricane winds are among the most powerful on Earth. Below the eyewall, they often exceed 200 km/h and can reach 350 km/h. Only tornadoes produce stronger winds, but on smaller scales and for shorter periods of time. The distribution of winds is rarely symmetrical: they are often more intense on the right (resp. left) of the cyclone with respect to its displacement in the northern (resp. southern) hemisphere. When a cyclone passes, debris of all sizes carried by the wind becomes projectiles that hit everything exposed. However, it is not the sustained winds that cause the most damage, but rather variations in intensity and direction that weaken the structures. Variability increases inland as topography generates small-scale (a few kilometers) and locally more intense circulations.

Encyclopédie environnement - cyclones - surface océan trace cyclone - cyclone winds
Figure 5. Ocean surface with white scum and spray trails under conditions of strong cyclonic winds. [Source: After http://www.tudelft.nl/uploads/RTEmagicC_atlas09e_02.jpg ]
Encyclopédie environnement - cyclones - cyclone tracy
Figure 4. The city of Darwin, in northern Australia, devastated by Cyclone Tracy at Christmas 1974. [Source: https://s.yimg.com/ea/img/-/140824/cyclone_tracy_19vivve-19vivvs.jpg ]
The ocean surface reacts to cyclonic winds by forming a swell whose amplitude can reach ten metres. Its direction changes with the direction of the wind that rotates around the eye and, when the cyclone moves, it generates dangerous cross swells resulting from the superposition of waves generated by winds coming from different directions. When the wind blows at more than 200 km/h, the amount of spray becomes such that a kind of moisture-saturated fog invades the tens of metres above the surface. This buffer zone, between the ocean and the atmosphere, plays an important role in the evolution of intense cyclones, reducing surface friction and limiting energy exchanges between the two environments.

Encyclopédie environnement - cyclones - cyclone nargis
Figure 6. Invasion of the Irrawaddy Delta (Burma) by the sea during Cyclone Nargis (May 2008). [Source: NASA Earth Observatory]
In deep waters, the friction caused by wind and central depression leads to a relatively low elevation of the ocean surface, at most a few tens of centimetres. But in the shallow costal waters, this causes a rapid and sharp rise in water level, the “Storm Surge” that breaks out like a tsunami. Its amplitude is maximum on the right (left) of the displacement in the northern hemisphere (south). It is 1 to 2 metres for light cyclones, but it can exceed 10 metres for the most powerful ones. The superposition of the storm surge and the astronomical tide produces the “Storm Tide”. Focusing by bathymetry and reflections from the coast can locally increase the amplitude of this exceptional tide. Depending on the topography of the area, seawater can penetrate inland for several tens of kilometres.

2. Tropical cyclone forecasting

Encyclopedie environnement - cyclones - centres meteorologiques regionaux - centre specialized in tropical cyclone
Figure 7. Distribution of Regional Meteorological Centres Specialized in tropical cyclone monitoring and forecasting (in English RSMC) [Source : blog.metservice.com/. [This information is made freely available by MetService. Despite this, MetService is not associated. with, and does not endorse, Encyclopédie de l’environnement or have involvement in how
this information is presented) ]
WMO has allocated responsibility for cyclone monitoring and forecasting. Five ” Regional Specialized Meteorological Centres” (RSMCs) provide trajectory and intensity forecasts in their areas of responsibility. The RSMC of Miami (United States of America) is in charge of the North Atlantic and the eastern North Pacific; the one of Reunion Island, under the responsibility of Météo-France, monitors the events in the southwestern Indian Ocean; New Delhi (India) focuses on those in the Arabian Sea and Bay of Bengal; Tokyo (Japan) follows typhoons in the western North Pacific; disturbances in the southwest Pacific are under the control of Nandi (Fiji) and those in the central North Pacific are followed by Honolulu in Hawaii. Surveillance of the southeast Indian ocean and northern Australia is spread over several centres in Australia, Indonesia and Papua New Guinea. A name is assigned by the appropriate RSMC to any disturbance that reaches tropical storm status. Names – most often alternately male and female first names – are taken from pre-established and regularly updated lists, removing those of the most devastating cyclones.

Predicting the trajectory and evolution of cyclones is the main task of the CMRS. Thanks to improved observations and numerical models, the average statistical error has decreased by about 1% per year in recent decades. The uncertainty about the position of the centre of a cyclone, derived from satellite images, is a few tens of kilometres. With regard to forecasts, uncertainty is increasing by about 100 kilometres per day of the forecast period. The position of a cyclone at 24, 48 or 72 hours is therefore only expected within margins of about 100, 200 or 300 kilometres. These are only average values and the reliability of forecasts varies according to cyclones and their environment. In addition, a few large errors often have a much stronger impact on the public than the more correct forecasts. It is difficult to predict slower and more erratic trajectories. Progress in predicting the intensity of cyclones – wind strength, amount of precipitation, wave and tidal amplitude – is more limited due to the complexity of internal processes and interactions with the environment.

Encyclopédie environnement - cyclones - cyclone tuni
Figure 8. Forecast of the trajectory of tropical cyclone Tuni by the Australian Meteorological Service on 28 November 2015. The grey area indicates the increasing margin of uncertainty at successive maturities. [Source: http://la1ere.francetvinfo.fr/nouvellecaledonie/2015/11/29/cyclone-tuni-aux-samoa-inondations-et-glissements-de-terrain-310405.html]
Encyclopédie environnement - cyclones - erreurs moyennes positions cyclones
Figure 9. Evolution of average annual errors at the various times of the position of the cyclones (left) and their intensity (right). [Source: http://www.nhc.noaa.gov/ ]

3. Risk prevention

Encyclopédie environnement - cyclones - cyclone hugo
Figure 10. Damage caused by the passage of the powerful cyclone Hugo over Guadeloupe on 17 September 1989. [Source: According to http://www.guadeloupe.franceantilles.fr/actualite/education-sante-environnement/dossier-cyclone-en-guadeloupe/].
Cyclone monitoring is probably the area where weather forecasting has the most significant economic and social consequences. A crucial aspect concerns the transmission of meteorological information (observed state of the cyclone, expected trajectory and evolution) to the security authorities and the public. Warning procedures must have been well defined in advance, including the different levels leading to graduated reactions from the authorities and the population. The interruption of economic and civil activities, the accommodation of displaced persons, the provision of emergency relief and the subsequent restoration of services are major operations in terms of cost and social impact. It is therefore necessary to avoid both the underestimation of risks with potentially dramatic consequences and the overestimation of warnings that erodes the confidence that populations and officials have in forecasts.

Encyclopedie environnement - cyclones - cyclone Dina
Figure 11. Parcel of cryptomerias devastated by the passage on Reunion Island of Cyclone Dina on 22 January 2002 in Reunion Island. [Source: http://www.onf.fr/la-reunion/sommaire/onf/connaitre/environnement/ ]
Several French overseas departments and territories are exposed to cyclonic risk: Guadeloupe and Martinique in the West Indies, Reunion Island in the Indian Ocean, New Caledonia and Polynesia in the Pacific. On these islands, it is not possible to evacuate populations far from threatened areas. The focus is on the protection of people and property. The “Specialised Cyclone Emergency Plan” defines the responsibilities in terms of information and mobilisation of specialised services. Its implementation is decided and managed by the State representative (prefect in the departments, high commissioner in the territories) on the basis of observations and forecasts from the local Météo-France office.

After a hurricane event, devastation requires rapid action and significant state support, which is only possible with some effectiveness in developed countries. Elsewhere, the scars left by a cyclone can last for years. The considerable damage that must be reimbursed can put insurance companies in difficult situations. Given the scale of the claims (hundreds of millions to tens of billions euros), these companies also reinsure themselves with other companies. Through a game of financial dominoes, the passage of a cyclone over a tropical country can trigger economic storms in the quieter markets of London, Zurich, New York or Tokyo.

 


References and notes

Cover photo: www.commondreams.org


The Encyclopedia of the Environment by the Association des Encyclopédies de l'Environnement et de l'Énergie (www.a3e.fr), contractually linked to the University of Grenoble Alpes and Grenoble INP, and sponsored by the French Academy of Sciences.

To cite this article: ROUX Frank (March 11, 2019), Tropical Cyclones: impacts and risks, Encyclopedia of the Environment, Accessed December 21, 2024 [online ISSN 2555-0950] url : https://www.encyclopedie-environnement.org/en/air-en/tropical-cyclones-impacts-and-risks/.

The articles in the Encyclopedia of the Environment are made available under the terms of the Creative Commons BY-NC-SA license, which authorizes reproduction subject to: citing the source, not making commercial use of them, sharing identical initial conditions, reproducing at each reuse or distribution the mention of this Creative Commons BY-NC-SA license.

热带气旋:影响与危害

PDF

  2013年11月,台风“海燕”席卷过后,菲律宾的塔克洛班市成为一片废墟。这也证实了气旋同地震一样,是最具破坏性的自然现象之一。专业气象设备正在全世界范围对其加以监控,并向涉及相关风险的人群发出警告。然而,我们依然要做好万全准备,来面对这可怕的灾难。

1. 热带气旋的影响

  每一年,气旋、台风以及飓风都会影响全球多国。其带来的强风、强降雨、巨浪和风暴潮造成了严重的人员伤亡和财产损失。这些危险现象不仅仅出现在岛屿和海岸附近。即便是强度有所减弱的飓风,也常常会对内陆地区造成一定破坏,主要表现为洪水和山体滑坡。哪怕是与海洋相距数百公里的地区,有时也无法幸免于难。

环境百科全书-热带气旋-洪水
图1.1991年4月,气旋过后,孟加拉国戈尔诺普利河附近洪水泛滥。

  过去五十年间,热带气旋已造成近百万人死亡。之所以会有如此惊人的死亡人数,是因为易受灾地区的人口正不断增长。这一方面是由于发达国家民众向往阳光,选择前往这些地区居住或旅游,另一方面也是由于这些地区本身就处于人口增长之中。在发达国家,因为预测方法的改进,死亡人数已显著降低。但与此同时,灾难破坏带来的平均财产损失正在急剧上升。例如,2005年8月,飓风“卡特里娜”席卷新奥尔良,造成了至少1000亿欧元的损失。在人员伤亡方面,受灾最严重的地区是孟加拉国。该国于1970年11月和1991年4月两次遭受飓风袭击,这两次飓风各夺去了二十余万人的生命。此外,1998年10月登陆洪都拉斯和尼加拉瓜的飓风“米契”,2008年席卷缅甸伊洛瓦底江三角洲的热带风暴“纳吉斯”,以及2013年冲击菲律宾的台风“海燕”,均造成数万人死亡。

环境百科全书-热带气旋-飓风灾害
图2. 1998年10月,在特古西加尔巴街上,人们正在清理飓风“米契”留下的滑坡废墟。(来源:http://s.hswstatic.com/gif/worst-hurricanes-10.jpg)

  气流经过海洋表面时会聚集水分,水分凝结后形成降水。在气旋中心周围100 km半径内,日累积降雨量约为10 cm。但对于天气活动剧烈的地区以及某些特定区域(如风眼墙或者多山地区),降雨量达到该值的5到10倍也并不稀奇。气旋着陆后,由于陆地表面比海洋更粗糙,风速会因摩擦变慢,并导致接近海岸的气旋象限(cyclone quadrant)出现强烈的收敛。这使得气流上升更为剧烈,加速水分凝结,从而增加降水。一般而言,着陆后风眼墙会很快减弱。然而,气旋的外围降水带对这种转变却更为耐受,通常会侵入内陆地区,带来暴雨。

环境百科全书-热带气旋-洪水泛滥
图3.2005年8月,飓风“卡特里娜”过后,新奥尔良洪水泛滥。

  飓风的风速位居全球前列。在风眼墙下,其风速通常超过200 km/h,甚至可以达到350 km/h。只有龙卷风能在风力上胜其一筹,但龙卷风的规模较小,持续时间更短。气旋各处风的分布往往是不对称的:在北半球移动时,气旋右侧的风通常更强烈,反之,南半球移动的气旋一般左侧风力更强。当气旋经过时,风中携带的大小不一的碎屑便会呈抛射状击中裸露在外的物体。但造成最大破坏的不是持续性的风,而是风力和风向的变化,这种变化会削弱建筑结构。地形变化催生出规模数公里且更为剧烈的局部环流,内陆的情况也随之更加变幻莫测。

环境百科全书-热带气旋-造成的危害
图4.1974年圣诞节期间,澳大利亚北部的达尔文市被热带气旋“崔西”夷为平地。(来源:https://s.yimg.com/ea/img/-/140824/cyclone_tracy_19vivve-19vivvs.jpg)
环境百科全书-热带气旋-危害
图5.受气旋强风影响,海洋表面布满白色泡沫与浪花轨迹。(来源:http://www.tudelft.nl/uploads/RTEmagicC_atlas09e_02.jpg)

  海洋表面在气旋强风的影响下,会形成高达十米的涌浪(swell)。涌浪的方向与风相同,均围绕风眼旋转。当气旋移动时,不同风向的风所引发的涌浪相交叠,会形成危险的交叉涌浪(cross swell)。当风速200 km/h时,浪花会四散形成一种水分饱和的雾,充斥海面上空数十米的区域。这样一个缓冲区在强气旋的演变中起到重要作用,不仅减少了表面摩擦,而且限制了海洋与大气之间的能量交换。

环境百科全书-热带气旋-海浪
图6.2008年5月,热带风暴“纳吉斯”持续期间,海浪侵袭缅甸伊洛瓦底江三角洲。(来源:NASA地球观测站)

  在深海海域,风的摩擦和中心低压只会造成局部海平面的微弱升高,最多不超过几十厘米。但在沿海浅水区,上述效应会导致水位急剧上升,引发如海啸一般的“风暴潮”(Storm Surge)。在北半球,气旋移动方向的右侧浪高最大,南半球则刚好相反。轻型气旋可产生约1-2 m的浪高,一些较为强烈的气旋则会导致超10 m的巨浪。风暴潮与天文潮的叠加引发了“风暴潮汐”(Storm Tide)。较深的海水和海岸的反射会在局部加剧这种异常潮汐的强度。根据地形的不同,海水可以深入内陆多达数十公里。

2. 热带气旋的预测

环境百科全书-热带气旋-气象中心分布情况
图7.区域专责气象中心(RSMC)的分布情况。(来源:blog.metservice.com/[此信息由MetService免费提供。尽管如此,MetService与《环境百科全书》没有关联,也不为其提供背书,且不参与该信息的呈现方式。])

  世界气象组织已为飓风监测和预报分配好了职责。五个“区域专责气象中心”(RSMC)在各自负责的区域内提供气旋轨迹和强度预测。迈阿密区域专责气象中心(美国)负责北大西洋和太平洋东北部;留尼旺岛专象中心受法国气象局管辖,负责监测印度洋西南部的情况;新德里专象中心(印度)着重监测阿拉伯海和孟加拉湾一带;东京专象中心(日本)监测着太平洋西北部的台风;太平洋西南部的扰动由楠迪专象中心(斐济)监管。北太平洋中部地区由夏威夷的火奴鲁鲁专象中心负责。印度洋东南部和澳大利亚北部的监测工作则由澳大利亚、印度尼西亚和巴布亚新几内亚的数个中心分管。任何达到热带风暴标准的扰动都会由相应的专象中心进行命名。除了破坏性最大的气旋外,其余气旋的名称一般取自于预先确定并定期更新的名单,通常为男子或女子的姓名。

  预测气旋的运行轨迹和演变是区域专责气象中心的主要任务。得益于改进过的观测方法和数值模型,近几十年来,平均统计误差每年下降约1%。根据卫星云图推断出的气旋中心位置,不确定性范围仅为几十公里。至于预测方面,预测期每拉长一天,不确定性范围都增加约100 km。因此,气旋的24、48及72小时位置预测偏差不会超过100、200和300 km。以上仅仅是平均值,预报的可靠性还因气旋及周边环境而异。此外,对公众而言,误差较大的预测往往会比相对准确的预测产生更大的影响。预测更慢以及更不稳定的轨迹是有一定难度的。由于气旋内部过程及其与环境的相互作用十分复杂,目前气旋强度(如风力、降水量、浪高等)预测方面的进展仍有局限。

环境百科全书-热带气旋-轨迹
图8. 澳大利亚气象局于2015年11月28日对热带气旋“突尼”轨迹的预报。灰色面积表示不确定性范围,随着预测期不断延长,该范围也逐渐扩大。
(来源:
http://la1ere.francetvinfo.fr/nouvellecaledonie/2015/11/29/cyclone-tuni-aux-samoa-inondations-et-glissements-de-terrain-310405.html)
环境百科全书-热带气旋-误差演变
图9. 气旋位置(左)及其强度(右)在的年均预测误差随时间的变化趋势。
(来源:http://www.nhc.noaa.gov/)

3. 风险的防范

环境百科全书-热带气旋-废墟
图10. 1989年9月17日,强热带气旋“雨果”过境瓜德罗普后,留下一片废墟。
(来源:http://www. guadeloupe. franceantilles. fr/actualite/education-sante- environnement/ dossier-cyclone-en-guadeloupe/)

  气旋监测可能是天气预报对经济和社会影响最大的领域。向安全当局和公众传递气象信息(观察到的气旋状况、预期的轨迹和演变)至关重要。预警程序必须事先明确,不同级别的气旋来临时,当局和民众应当作出不同级别的反应。就损失和社会影响而言,主要任务包括经济和民间活动的中断、流离失所者的住宿、紧急救济的提供以及后续的灾后重建。因此,既要避免因低估埋下巨大风险隐患,也要避免因高估削弱居民和官员对预测的信心。

环境百科全书-热带气旋-破坏
图11. 2002年1月22日,气旋“迪纳”过境留尼汪岛后,当地的一片柳杉地受到了严重破坏。

  法国的一些海外省和海外领地正面临着热带气旋风险:如西印度群岛的瓜德罗普岛和马提尼克岛、印度洋的留尼汪岛、太平洋的新喀里多尼亚和波利尼西亚。在岛上,疏散居民,让其远离受威胁区域几乎是不可能的,重点是要确保民众的生命财产安全。“专业气旋应急计划”(Specialised Cyclone Emergency Plan)规定了信息通知和专业服务动员方面的责任。该计划的执行工作由国家代表(包括各海外省省长及各领地高级专员)负责,根据法国气象局地方办事处的观察和预测结果进行决策和管理。

  飓风过后,灾后恢复需要迅速的行动和国家的大力支持。然而,只有发达国家能够真正做到这一点,而在其他地区,飓风留下的伤疤或将持续数年。同时,需要赔偿的巨大损失也会使保险公司陷入困境。考虑到索赔的规模高达数亿到数百亿欧元,这些公司还会与其他公司进行再保险。通过这样一场金融多米诺效应,气旋在热带国家掀起的自然风暴将会在伦敦、苏黎世、纽约或东京等较为风平浪静的市场再度掀起经济风暴。

 


参考资料及说明

封面图片:www.commondreams.org


The Encyclopedia of the Environment by the Association des Encyclopédies de l'Environnement et de l'Énergie (www.a3e.fr), contractually linked to the University of Grenoble Alpes and Grenoble INP, and sponsored by the French Academy of Sciences.

To cite this article: ROUX Frank (February 24, 2024), 热带气旋:影响与危害, Encyclopedia of the Environment, Accessed December 21, 2024 [online ISSN 2555-0950] url : https://www.encyclopedie-environnement.org/zh/air-zh/tropical-cyclones-impacts-and-risks/.

The articles in the Encyclopedia of the Environment are made available under the terms of the Creative Commons BY-NC-SA license, which authorizes reproduction subject to: citing the source, not making commercial use of them, sharing identical initial conditions, reproducing at each reuse or distribution the mention of this Creative Commons BY-NC-SA license.