生物多样性对全球变化的响应

Biodiversité changement globaux

  森林采伐、栖息地的破坏和污染,农业和畜牧业的集约化与城市化,大量排放温室气体、海洋酸化、密集型工业捕鱼、物种转移……我们人类不断扩张,同时许多人类活动对地球态系统施加的压力越来越大。物种和生态群落如何应对这些压力?我们是否能预测其动态?鉴于物种及物种间相互作用的多样性,我们首先要确定物种和群落适应其物理和生物环境变化的主要动因。然后,在人类活动加强且引起全球变化的此刻,我们将通过这些机制理解并预测当前的动态。

1. 适应变化的关键

  自达尔文开始,我们知道物种会因为自然选择随时间变化,自然选择会筛选出种群中最具适应力的个体,或者更准确地说,那些能更好将其生物特征(随基因)遗传给下一代的个体。这个进化和适应的过程使得物种能在不同时间尺度对其生活环境中的常规变化做出响应。

  过去六十年里,生态和进化方面的研究已证实物种一方面在个体水平上适应生活环境的多样性,同时也在种群水平上适应“灾难性”事件的相对频率[1]。让我们一探究竟。

1.1. 生态位宽度和“表型”可塑性

  根据哈钦松(Hutchinson)所言[2],任何物种或种群都可以用其“生态位”来表征,生态位可视为这个物种,即其物理、化学和生物需求的集合,在一个生态系统中占据的“位置”。作为自然选择的结果,这些生态需求随物种生理和行为在代际间进化。因此,每个物种的生态位“宽度”会在时间和空间上适应生活环境的变化,这些变化通常由个体遇到(见焦点从生态位的建立到生态系统的破坏)。

环境百科全书-生物多样性对全球变化的响应-鲻鱼
图1. 生活在河口、泻湖和地中海沿岸的鲻鱼(Liza saliens)能忍受水体含盐量的大幅度波动。[来源:雷眼(Ray eye),CC BY-SA 2.5,通过维基共享资源]

  例如,远洋(也就是公海)鱼类和无脊椎物种通常是狭盐性的,因为离岸海水的含盐量变化非常微弱(大约32 g/l);另一方面,河口物种必须是广盐性的,因为它们要适应含盐量的巨大波动。

  因此,自然选择倾向为适应变化产生形态、生理和/或行为上的改变,个体因此能应对其生活环境中长期存在和反复发生的常规变化。个体会显现出特定的适应性,或者说所谓的“表型”可塑性,这可以在其发育过程中实现(不可逆转),或在生命周期全程伴随或先于环境变化持续发生。

  不可逆转的表型适应的典型例子为水蚤保护性头盔的形成,这由其最初栖息地中存在鱼类捕食者[3];或者社会性昆虫(群居的蜜蜂、蚂蚁、白蚁等)的社会地位决定,它们的幼虫根据蚁群中工蚁分配的食物变成工蚁、兵蚁(在白蚁中)或繁殖者。

  当环境变化具有周期性或循环性时,个体可塑性有可能可逆。因此,物种的物候变化与其栖息地的日夜节律(昼夜周期)和季节变化一致。在温带地区,落叶树木对日长或光周期很敏感。每年秋天,它们会落叶、长出新芽,并进入冬眠。

环境百科全书-生物多样性对全球变化的响应-高山土拨鼠
图2. 为适应环境每年的周期性变化,高山土拨鼠(Marmota marmota)在夏末积累充足的脂肪,然后在洞穴里铺上干草,全家一起关起门来过冬。[来源:大卫·蒙尼奥(David Monniaux),CC BY-SA 3.0,通过维基共享资源]

  许多动物物种都是如此,特别是昆虫和陆生脊椎动物(哺乳动物、爬行动物和两栖动物,但不包括鸟类),它们躲在掩蔽处以某种迟缓状态(冬眠、冬季嗜睡、滞育……)应对冬天。对于鸟类而言,温血生物不能将体温调整得太低,一些物种,例如松鸦、五子雀与星鸦,会在夏末囤积种子以便冬天取食,而另一些物种(尤其是食虫动物,如雨燕和燕子)则囤积脂肪并在夏天筑巢之前迁移到更温暖的纬度。

  所有脊椎动物也受一种脑激素的分泌周期所调控——褪黑素,即24小时活动周期(昼夜周期),也是对地球上昼长及日夜交替的适应。

环境百科全书-生物多样性对全球变化的响应-烟草植株
图3. 烟草植株。当它的叶子受到掠食者攻击时,烟草会像许多植物一样合成对食草动物有毒的酚类化合物来保护自己。此外,一如桤木、苦艾或糖枫,它会释放一种警报信息素(挥发性化合物),诱导附近同种植物合成相同的信息素。[来源:福雷斯特(Forest)和金·斯塔尔(Kim Starr),CC BY 3.0,通过维基共享资源]

  然而,生物并非在一个变化可测可控的环境中进食、防御和繁殖的简单自动装置:大多数生物能够适当对预料之外的环境变化作出反应,显示出一定的行为弹性

  植物也不甘落后。植物可以通过适应行为对所在环境的日常变化做出响应,不仅包括周期性变化(光照强度,温度……),还包括不可预测的变化(捕食,感染,竞争……)。例如,我们可以观察到,花朵的方向和/或开放与否取决于在光线下的暴露程度,合成抵抗掠食者的有毒化合物,对同类植物散发的吸引信息素或被侵略时对同类邻近植物散发的警报信息素。

  行为可塑性不仅存在于没有真正感觉器官的植物中,也是动物的一种普遍属性。它随着动物的学习能力(认知和实践能力),及其社会性(社会群体的复杂性)和流动性的增加而增加。人们已经观察到一些群居的无脊椎动物,如蜜蜂,以及非群居的无脊椎动物,如普通章鱼,都有这种现象,而哺乳动物和鸟类表现最为显著,它们有很强的认知能力、高能量需求以及复杂的社会系统[4]

环境百科全书-生物多样性对全球变化的响应-章鱼
图4. 普通章鱼以其探索和“操纵”新事物的习性、出色的视觉记忆和学习能力而闻名。[来源:阿尔伯特·科克(Albert Kok),荷兰维基百科(原文:阿尔伯特·科克),公有领域,通过维基共享资源]

 生理耐受、形态或生理调节、行为灵活性这三种机制能使个体对其环境中的惯常变化作出适应性反应。这些机制有助于物种形成对其栖息地和生活条件变化的适应潜力,不管变化是由其他“演员”——就目前环境变化而言指人类——还是其自身活动造成(见焦点从生态位的建立到生态系统的破坏)。

1.2. 生境稳定性与“人口”遗传策略

  在涵盖数个世代更广阔的时间尺度上,物种的生物学特征也可以通过响应环境波动发生进化,这在个体水平上无法预计。

  物种对其栖息地变化的长期适应机制不仅是人口统计学问题,也是遗传学问题,因为它依赖于种群的多样性和遗传进化。自从麦克·阿瑟(Mac Arthur)和威尔逊(Wilson)[5]在这一领域的开创性工作以来,进化生态学的研究已经证实,物种的“‘人口’遗传策略”(人口统计学和遗传学)适应了造成种群高死亡率灾难性事件的相对频率。

环境百科全书-生物多样性对全球变化的响应-“人口”策略r和K总结了物种的适应方法
图5. “人口”策略r和K总结了物种的适应方法,要么占据临时栖息地(图左侧),要么在可预测的饱和栖息地(图右侧)中竞争。它们分别对应逻辑关系Nt = K / [1+exp(-rt)]的初始状态和饱和平台,该关系描述了一个种群在时间t内占据一个栖息地的动态。其中,Nt:个体数量;K:所关注物种栖息地的承载能力;r:种群的内在增长率。图左:散播前刚刚孵化的“萤火虫”(Pyrrhocoris apterus)幼虫 [来源:安妮·泰赛德(Anne Teyssèdre)]。图右:津巴布韦稀树草原上的草原斑马[来源:塞巴斯蒂安·巴罗(Sébastien Barot)]。

  根据环境变化的规模和可预测性,可在数个世代间基于原理性区分两种主要的“人口”遗传策略(见图5):

  • 一是基于“数量”,即个体在临时栖息地的快速增殖(称为“r”,代表繁殖)和随机散播,这些临时栖息地在个体规模上不可预测;
  • 另一种基于“质量”,在更易预测和饱和的栖息地中,繁殖时间较晚,数量有限,但具有竞争力(称为“K”)。

  根据宾卡(Pianka)[6]的研究,r型选择青睐的主要生物性状有:

  • 早期繁殖,与较短的生命周期小体型相关,
  • 高繁殖力
  • 后代(种子、卵、幼虫……)通过被动或主动方式在早期进行散播

  与“K”策略相关的生物特征:

  • 晚期繁殖,与较长的生命周期大体型相关,
  • 低繁殖力
  • 在动物中包括照顾幼体[7][8][9]

  此外,物种的遗传多样性随个体数量增加而增加;因此,它也随着有利生境的面积、个体间的连通性和种群内在增长率的增加而增加。

  “r”策略,用来应对偶发的大量猎杀

环境百科全书-生物多样性对全球变化的响应-发霉的油桃
图6. 名为“霉”的微型真菌侵染营养丰富的油桃。[来源:罗杰·麦克拉苏斯(Roger McLassus) 1951年呈现(基于版权声明),CC BY-SA 3.0,通过维基共享资源]

  这是居于临时栖息地(动物或植物宿主,季节性栖息地,有机垃圾……)的微生物的常用策略,如细菌、原生生物、真菌……和病毒,以及肉眼可见的藻类和真菌,它们能够迅速占据新的有利栖息地。

  “r”策略(快速增殖和散播)利用个体繁殖力和流动性,而不非其在生存方面的适应能力和技能,来使小型多育物种在遭受大量猎杀后反弹。随机迁移和基因突变加速了它们的遗传进化和对潜在栖息地多样性(和不可预测的空间分布)的适应。采用“r”策略的大量近缘个体的“随机散播”有利于发现和开发新资源(例如新的宿主物种),从而适应新的生活环境。这些特征增加了适应不稳定生境的物种(准种群)长期生存的可能性

  在植物中,许多一年生植物禾草采用“r”策略,它们将大量的花粉和种子散播到很远的地方(通过风或动物运输),在被其他竞争力更强、寿命更长的物种吃掉、踩坏、烧毁、枯萎或取代之前迅速占据开放的栖息地。

环境百科全书-生物多样性对全球变化的响应-海滩
图7. 海滩。和大多数海洋“无脊椎动物”一样,贻贝、玉黍螺、墨鱼和蔓足类都是繁殖力很高的“r”型物种。[来源:安妮·泰赛德]

  在动物中,大多数早熟、繁殖力高,卵、幼虫或成虫散播能力强的昆虫和其他“无脊椎动物”采用这种策略。通常高繁殖力、高被捕食压力的鱼类可能也遵循这一策略,但程度较小。鸟类和哺乳动物不怎么采用“r”策略,这些动物都要照顾幼崽,并且其雌性繁殖能力有限,“r”策略主要表现在种群数量波动较大的许多小型哺乳动物上,如啮齿动物。

  种群随其内在增长率和遗传多样性增加而增加的恢复力和快速进化能力,似乎是微生物和其他多育物种面对当前全球变化的力量。这就是耐受特定抗生素的细菌株系、耐受抗真菌药物的真菌品系、抗除草剂的杂花植物和抗杀虫剂的“害虫”昆虫不时出现并蓬勃发展的原因(见焦点蜜蜂的“人口”遗传策略)。

  “K”策略,很难适应栖息地的破坏

环境百科全书-生物多样性对全球变化的响应-母河马和她的幼崽
图8. 母河马和她的幼崽。和大部分大型有蹄类动物(羚羊、加拿大盘羊、马、犀牛……)一样,雌性的两栖河马在4至7岁时达到性成熟,经过很长的妊娠期(8个月)后产下一只幼崽——对它们来说生育速率大概是两三年一只。[来源:吉尼萨(Jnissa),CC BY 2.0,通过维基共享资源]

  与“r”策略不同,“人口”遗传(“K”)策略是指寿命长、生育能力低的哺乳动物,如有蹄类动物、海洋哺乳动物和类人猿所采用的策略,它们种群相对较小(遗传多样性低),每年最多养育一只幼崽。这种策略可能会在它们生活条件发生剧变时使其处于不利境况(见焦点对气候变化的适应,基于哺乳动物的动态)。种群的生存依赖局部和区域剧变的程度,以及个体生理和行为的可塑性。

  但是,应当指出,在其他因素中,有性物种的繁殖力随雌性对每个后代生存和繁殖投入的时间和精力而异。在缺乏亲代抚育的情况下,自然选择倾向于最具生育能力的雌性。

  因此,在亲代作用有限的植物中,树木这样适应稳定而饱和的森林栖息地的大型、长寿物种的策略伴往往伴随很高的繁殖力,这种繁殖力随着个体大小和年龄的增加而增加。类似地,由于没有能力保护散播到海上的卵,大型远洋鱼类(如金枪鱼和鳕鱼)的雌性只注重数量(高繁殖力),而不关心后代的个体生存。

  一般而言,物种进化策略的复杂性随其相互作用多样性的增加而增加。例如,尽管体型小,且(少数)有生殖能力雌性的繁殖力很高,但蜜蜂、白蚁和裸鼹鼠这样的完全社会性物种更倾向于“K”型而不是“r”型战略家,因为它们限制了自己的繁殖(只占种群成员的一小部分),并依靠集体幼仔饲养和群体内合作来提高环境的可预测性,从而提高种群持久性(见焦点对栖息地人类化的适应)。

2. 适应潜力和全球变化

  我们可以认清物种适应环境变化的三个主要因素:

  • 种群遗传多样性,对不可预测环境变化的可能反应库,
  • 种群内在增长率,这有利于被猎杀后的恢复力,以及个体的表型可塑性(形态、生理和行为)。

  在所有系统群体中,多育和小型物种(“r”型)通常结合了前两个因素,而第三个则是具备高认知能力动物物种的特点,如哺乳动物和鸟类。然而,这些里一部分是“K”物种,体型大,繁殖力低,数量少,在“‘人口’遗传”水平上缺乏应对环境大而快速变化的能力。在这些条件下,我们能否预测物种和群落响应当前全球变化的动态,尤其是多样性、普遍性和速度?

2.1. 物种的主要响应是什么?

环境百科全书-生物多样性对全球变化的响应-树林边缘的狍子
图9. 树林边缘的狍子。狍子是一种在欧洲扩张的多营物种,利用这里没有或很少有狼和其他大型捕食者这一优势,它们在森林、田野和草地上捡拾食物。[来源:西尔维耶(Sylvouille),法国维基百科,CC BY-SA 1.0,通过维基共享资源]

  根据作为物种适应潜力基础的生物学和人口统计学特征,人们可以实地预测和验证:

  • 多营物种(“r”和“K”,包括人类自己!)的扩张,在所有因人类活动而改变的生态系统中——例如欧洲的野猪、狍子、山雀、山鸡和乌鸦;非洲中部的橄榄狒狒……;
  • 多育的“r”型物种的恢复力(具有高繁殖力、早期繁殖、幼体或成虫具有高流动性),在遭到局部或区域性大量猎杀之后——例如密集型单一栽培地区中迁徙蝗虫、玉米螟、地鼠和其他所谓的“作物害虫”的周期性侵扰;
  • 在改良的生态系统中,面临新的生活环境时“r”物种的适应和快速遗传进化,甚至是物种形成——例如新的耐抗生素细菌系和重组病毒参与传染病流行的情况,几十年来一直在增加[11];以及抗杀虫剂昆虫和一年生植物的例子(见焦点对栖息地人类化的适应)[12]
  • 多营“K”物种较慢的行为适应和基因进化,即人类的共生体,在这些改良的生态系统中扩展——这对应上文中提到的正在扩张的“K”物种:欧洲的鹿,非洲的草原狒狒……;
  • 环境百科全书-生物多样性对全球变化的响应-松树列队毛虫
    图10. 松树列队毛虫。左图是在一棵欧洲赤松上筑巢的列队毛虫。[来源: 特劳缪恩(Traumrune) /维基共享资源]右图,森林里毛虫队伍。[来源:拉米奥特(Lamiot),CC BY-SA 3.0,通过维基共享资源]。由于繁殖力高(对成年蛾而言)、能大量取食松针(对毛虫而言),松树列队毛虫(Thaumetopoea pityocampa)的种群正利用气候变化扩大在高海拔和北部地区的活动范围。
    为响应全球变暖,r”和“K”物种或多或少地迅速迁移到更有利的生活环境——例如树皮甲虫(食木甲虫)、卷叶虫(植食性毛虫)和其他所谓的“森林害虫”向两极和更高海拔迁移。

  但同时:

  • 许多专营的“K物种在减少和消失,这些物种由于栖息地碎片化和/或逐步转变而变弱,在遭受局部大量猎杀后无法恢复(见焦点哺乳动物和全球变化,基于哺乳动物的动态),
  • 一小部分r物种(主要是专营物种)正稀有化和消失,它们面临栖息地和资源的消失或彻底转变(例如珊瑚礁中的无脊椎动物和鱼类,密集型农业地区的昆虫);
  • 环境百科全书-生物多样性对全球变化的响应-被圈养的猩猩
    图11. 圈养的猩猩。随着农业用地的扩张,长期生活在东南亚热带雨林的猩猩的栖息地正在缩小。由于专营食谱(树叶)、高能量需求和低繁殖力,该物种只能在一些数量下降的种群中或通过被圈养生存下来。[来源:安妮·泰赛德]
    多营的“K种群和物种的最终减少是因为它们被栖息地和生活环境转变的规模和速度所压垮(见焦点从生态位建设到生态系统的破坏)。

  基于理论层面预期,实地观察能发现这些不同动态(见焦点对栖息地人类化的适应对气候变化的适应哺乳动物和全球变化),特别是在哺乳动物中[13]

2.2. 何为群落和生态网络的动态?

  在所有因人类活动改变的生态系统中,以牺牲专营物种为代价的多营物种的扩张往往会导致区域里动植物区系的均质化[14][15]全球范围内物种总数的减少(除非在孤立的新兴栖息地物种形成的多样性足够丰富,参考[16])。

环境百科全书-生物多样性对全球变化的响应-1989年以来对常见鸟类的时间监测
图12. 1989年以来对常见鸟类的时间监测(STOC):按生境类型划分的STOC指标。当多营物种在法国(和其他地方)扩张时,专营农田和其他栖息地的物种却在减少。因此,几十年来,当地鸟类群落的专营指数一直在下降。[来源:鸟类种群生物学研究中心(CRBPO,Vigie-Nature,MNHN)]

  因此,在欧洲,为应对农业集约化,频繁出现在农田以及城镇、村庄和/或森林中的多营鸟类(山雀、椋鸟、食腐乌鸦、林鸽……)在(退化的)农田中扩张了20年。相反,生活在专营农业环境的鸟类(如红雀、戴胜鸟、灰鹧鸪、凤头麦鸡等)则逐渐变得稀少(见图12)。为监测鸟类群落组成的这种动态,研究人员开发了一个群落专营化指数,该指数随栖息地受干扰程度[17]的增加而增加,并证实了过去20年里法国鸟类种群的均质化[14][18]

  生态系统是复杂、有组织的系统,具有有限的抵抗力和恢复力,由相互适应的物种网络形成,在彼此的相互作用和其所处的物理环境中代代进化。由于群落组成的快速变化,加上物种对其环境变化(包括气候变化)的不同适应速度,这些网络不再同步且被扰乱。这些变化增加了生态系统转向另一种稳定状态的风险,对许多物种(通常包括人类)不利[19][20](图13)。

环境百科全书-生物多样性对全球变化的响应-生态系统转变
图13. 在压力或其他外力(人为或非人为)作用下,生态系统从一种(稳定)状态A转变为另一种(稳定)状态B,后者的复杂性、连通性、生产力和/或生物量较低。由于A和B两种状态——或者说运行机制——在很大范围的压力下都能保持稳定,向双稳定区(橙色箭头)的转变通常是不可逆的。(换句话说,生态系统从B状态转变到A状态需要很高的外力强度)。[来源:安妮·泰赛德]

  在整个地中海地区可以观察到一系列的生态系统转变,例如,几个世纪以来,森林过度开发和当地牲畜的过度放牧已经导致当地许多森林生态系统转变为蒸散作用很低的灌木丛状态(灌木丛林地,马基群落),这些森林生态系统也因此很难再调节当地气候。对该状态的进一步压力反过来又增加了由过度放牧和气候干旱化向荒漠化演进的风险——目前全球变暖加剧了这种风险。当地生态系统不断向生产力复杂性营养多样性较低的稳定状态转变,不仅伤害了许多“非人类”物种——尤其是哺乳动物和鸟类——也伤害了暴露在该环境中的人类种群

环境百科全书-生物多样性对全球变化的响应-丹麦海岸普通水母
图14. 丹麦海岸普通水母(Aurelia aurita)的出芽生殖。[来源:Photo Vandmaend,CC BY 3.0,通过维基共享资源]

  随着时间的推移,当人类社会逐渐接管土地和“资源”时,生态群落和生态网络面对的压力也在增加。事实上,由于生物多样性丰富的栖息地(如森林、沼泽、充满鱼类的河流和海洋……)向生物能力较低的贫瘠栖息地(耕地、受污染的河流、“过度捕捞”的海洋)转变或退化,野生动物可使用的资源总量至少减少了四分之一[21]。这一限制不仅意味着相关动植物群落的丰度和生物量减少[22], [23],还意味着物种数量减少[24]。因此,其会缩短食物网[25], [26],增加生态系统崩溃的风险(见焦点从生态位建设到生态系统的破坏),并转向另一种对许多物种(包括人类在内)不利的稳定状态[27], [28], [29]

3. 总结

  • 通过多种活动和相互作用,每个物种都在世代间改变其环境并建立其生态位。
  • 一些被称为环境工程师的物种对其物理和生物栖息地具有强烈影响,从而影响当地群落结构和功能。其中之一——人类!——脱颖而出,因其近几个世纪以来对目前正在经历全球变化的陆地和水生生态系统影响的多样性和日益扩大的规模。
  • 每个物种对其物理和生物环境变化的响应取决于外在因素,例如这些变化的幅度和频率,以及内在因素,例如其行为可塑性和繁殖力。
  • 经过许多代,物种适应了个体常面对的生活环境的变化性。它们的生态位因此变得或宽或窄,反映以下差异:它们或多或少是多营的专营的
  • 此外,它们还能通过“人口”动态适应频繁发生的极端事件,这些极端事件会大量消减种群数量。
  • 因此,我们可以根据“人口遗传策略”来区分物种,根据它们是否适应了如今全球变化的程度和速度。
  • 生态系统和生态网络由众多彼此相互作用并与栖息地相互作用的物种组成,是复杂的、有组织的、有适应性的、恢复力有限的系统
  • 超过一定的干扰阈值,生态系统就会转变为另一种状态,其特征是不同的结构(物种网络)和不同的运行机制。
  • 目前许多面临全球变化的生态系统都遭逢这一情况。这些生态系统转变不仅对许多物种有害对人类社会也有害。人类社会对生态系统和生物圈施加的压力日益增长,同时自己也是受害者。

 


参考资料及说明

封面照片:丹麦海岸普通水母(Aurelia aurita)的生长[来源:Vandmaend 图片库(Photo Vandmaend),CC BY 3.0,通过维基共享资源]

[1] 一个种群的灾难性事件:造成高死亡率。

[2] Hutchinson GE. 1957. Concluding remarks. Cold Spring Harbor Symp Quant Biol 22:415-27.

[3] Tollrian R, 1990. Predator-induced helmet formation in Daphnia cucullata (SARS). Arch Hydrobiol 119(2): 191 – 196.

[4] Teyssèdre A., 2006. Les clés de la Communication animal. Delachaux et Niestlé, Paris.

[5] MacArthur R.H. & E.O. Wilson, 1967. The theory of island biogeography. Princeton Univ. Press, Princeton, NJ.

[6] Pianka E.R., 1970. On r and K selection. Am. Nat. 104:592-597.

[7] Reznick D., M.J. Bryant & F. Bashey , 2002. R- and K-section revisited: The role of population regulation in life history evolution. Ecology 83(6):1509-1520.

[8] Beaumont H.J.E., Gallie J. et al. 2009. Experimental evolution of bet hedging. Nature 462:90-92.

[9] Botero C.A., F.J. Weissing, J. Wright & D.R. Rubenstein, 2015. Evolutionary tipping points in the capacity to adapt to environmental change. Proc. Natl. Acad. Sci. USA 112:184-189.

[10] Starrfelt and Kokko 2012. Bet hedging: a triple trade-off between means, variances and correlations. Biol. Rev. 87, pp. 742-755.

[11] 参见R18 and RO11

[12] 参见R92

[13] Teyssèdre A., 2018. Les mammifères face aux changements globaux. Regards et débats sur la biodiversité, SFE, regard R80b, June 2018.

[14] McKinney M.L. & J.L. Lockwood, 1999. Biotic homogenization: a few winners replacing many losers in the next mass extinction. T.R.E.E . 14:450-453

[15] Clavel J., Julliard R. and V. Devictor, 2010. Worldwide decline of specialist species: toward a global functional homogenization? Front. Ecol. Environ. 2:222-228.

[16] Thomas C.D., 2015. Rapid acceleration of plant speciation during the Anthropocene. Trends Ecol. Evol. 30:448-455.

[17] Julliard R., J. Clavel et al. 2006. Spatial segregation of bird specialists and generalists in bird communities. Ecol. Letters 9:1237-1244.

[18] Clavel J., 2011. L’Homogénéisation biotique. Regards et débats sur la biodiversité, SFE, regard n°16, April 2011.

[19] Folke C., S. Carpenter et al. 2004. Regime shifts, resilience and biodiversity in ecosystem management. Ann. Rev. Ecol. Syst. 35:557-581.

[20] Cardinale B. et al. 2012. Biodiversity loss and its impact on humanity. Nature 486:59-67.

[21] Haberl H., 2007. Quantifying and mapping the human appropriationof net primary production in earth’s terrestrial ecosystems. Proc. Natl. Acad. Sci. USA 104:12944-12947.

[22] Gaston K.J., T.M. Blackburn, K. Klein Goldewijk, 2003. Habitat conversion and global avian biodiversity loss, Proc. R. Soc. Lond. B 270:1293–1300.

[23] Smil V., 2011. Harvesting the Biosphere: the Human Impact. Pop. Dev. Rev. 37(4):613-636.

[24] Teyssèdre A. & D. Couvet, 2007. Expected impact of agriculture expansion on the world avifauna. C. R. Acad. Sci. Biol. 330:247-254.

[25] Pauly D, V. Christensen V, J. Dalsgaard J, R. Froese & F.S.B. Torres, 1998. Fishing down marine food webs. Science 279:860-863.

[26] Watson R. & D. Pauly, 2001. Systematic distortions in world fisheries catch trends. Nature 414(6863):534-536.

[27] Folke C., S. Carpenter et al. 2004. Regime shifts, resilience and biodiversity in ecosystem management. Ann. Rev. Ecol. Syst. 35:557-581.

[28] Cardinale B. et al. 2012. Biodiversity loss and its impact on humanity. Nature 486:59-67.

[29] 参见生物多样性的前景R30, R31, R37 和R46.


环境百科全书由环境和能源百科全书协会出版 (www.a3e.fr),该协会与格勒诺布尔阿尔卑斯大学和格勒诺布尔INP有合同关系,并由法国科学院赞助。

引用这篇文章: TEYSSEDRE Anne (2024年3月13日), 生物多样性对全球变化的响应, 环境百科全书,咨询于 2024年12月22日 [在线ISSN 2555-0950]网址: https://www.encyclopedie-environnement.org/zh/vivant-zh/biodiversity-responses-to-global-changes/.

环境百科全书中的文章是根据知识共享BY-NC-SA许可条款提供的,该许可授权复制的条件是:引用来源,不作商业使用,共享相同的初始条件,并且在每次重复使用或分发时复制知识共享BY-NC-SA许可声明。

Biodiversity responses to global changes

Biodiversité changement globaux

Deforestation, fragmentation and pollution of habitats, intensification of agriculture and livestock farming, urbanization, massive emissions of greenhouse gases into the atmosphere, acidification of the oceans, intensive industrial fishing, transportation of species… Our expanding species does exert increasing pressures on the planet’s ecosystems, through its many activities. How do species and ecological communities react to these pressures? Can we predict their dynamics? Given the multiplicity of species and of their interactions, the first step here will be to identify the main drivers of the adaptation of species and communities to changes in their physical and biological environment. Then, we will take these mechanisms into account to understand and possibly anticipate current dynamics, in this period of global changes linked to the intensification of human activities.

1. The keys of adaptation to change

Since Darwin, we have known that species change over time as a result of natural selection, which sieves the fittest individuals within the populations, or more precisely those who better transmit their biological characteristics (with their genes) to new generations. This process of evolution and adaptation allows species to respond to the usual variations in their living conditions, on different time scales.

Research in ecology and evolution has confirmed for the past sixty years that species are adapted to the variability of the living conditions usually encountered by individuals, on the one hand, but also to the relative frequency of “catastrophic” events [1] encountered by the populations. Let us see how.

1.1. Niche width and ‘phenotypic’ plasticity

According to Hutchinson [2], any species or population may be characterized by its “ecological niche”, which may be defined as the “place” occupied by this species in an ecosystem, i.e. by the set of its physical, chemical and biological requirements. As products of natural selection, these ecological requirements evolve over generations, with the physiology and behaviour of the species. Thus, the “width” of the ecological niche of each species is adapted to the variations in living conditions usually encountered by individuals, in time and space (see Focus From niche construction to the destruction of ecosystems).

jumping mullet biodiversity global changes
Figure 1. Populating estuaries, lagoons and Mediterranean coastlines, jumping mullets (Liza saliens) tolerate wide fluctuations of water salinity. [Source: Ray eye, CC BY-SA 2.5, via Wikimedia Commons]
For example, pelagic (i.e. open ocean) fish and invertebrate species are often stenohaline because the salinity of the water off the coast varies very little (around 32 g/l); estuarine species, on the other hand, are necessarily euryhaline, as they are adapted to wide fluctuations in salinity.

Thus, natural selection prepares the individuals for the usual variations in their living conditions, whether long-lasting or recurrent, by favouring morphological, physiological and/or behavioural modifications adapted to these variations. Individuals then show a certain adaptability, or so-called “phenotypic” plasticity, which can be implemented during their development (and therefore be irreversible), or continue throughout life, accompanying or preceding environmental variations.

Among the irreversible phenotypic adaptations, let us quote the formation of a protective helmet in daphnia, conditioned by the presence of predatory fish in their initial habitat [3]; or the caste determinism in social insects (social bees, ants, termites, ..), whose larvae become workers, soldiers (in termites) or reproducers according to the diet given to them by the workers of the colony.

When environmental variations are recurrent or cyclical, the plasticity of individuals can be reversible. Thus, the phenology of species is set to the rhythm of daily (nycthemeral cycle) and seasonal variations of their habitats. In temperate regions, deciduous trees are sensitive to day length, or photoperiod. Each autumn, they shed their leaves, produce buds and go dormant for the winter.

Marmot biodiversity global changes
Figure 2. As an adaptation to the annual cyclic changes of their environment, alpine marmots (Marmota marmota) build up ample fat reserves in late summer, before lining their burrows with dry grass and locking themselves in as a family for the winter. [Source: David Monniaux, CC BY-SA 3.0, via Wikimedia Commons]
They accompany many animal species, especially insects and terrestrial vertebrates (mammals, reptiles and amphibians, but not birds) that take refuge in a shelter to face the winter in a state of torpor (hibernation, winter lethargy, diapause…). Among birds, warm-blooded organisms incapable of hypothermic change, some species such as jays, nuthatches and nutcrackers stock up on seeds at the end of the summer, which will feed them in winter, while others (insectivores in particular, such as swifts and swallows) stock up on fat and migrate to milder latitudes, before coming back to nest in the summer.

Similarly, the 24-hour activity cycle (circadian cycle) of all vertebrates, punctuated by the secretion cycle of a brain hormone, melatonin, is an adaptation to the length of the days – and the alternation of day and night – on our planet.

biodiversity global change tobacco
Figure 3. Tobacco plant. When its leaves are attacked by a predator, like many other plants, the tobacco plant defends itself by synthesizing phenolic compounds that are toxic to herbivores. In addition, like Alder, Wormwood or Sugar Maple, it emits an alarm pheromone (volatile compound) that induces the same synthesis in nearby plants of the same species. [Source: Forest & Kim Starr, CC BY 3.0, via Wikimedia Commons]
However, organisms are not simple automatons, programmed to feed, defend, and reproduce in an environment of predictable and controlled variations: most are also capable of responding to unexpected environmental variations with appropriate behavior, revealing a certain behavioral elasticity.

Plants are not to be outdone. Plants can react to daily, not only cyclical (light intensity, temperature…) but also unpredictable (predation, infection, competition…) variations of their local environment by adapted behaviors. We may observe, for example, the orientation and/or opening of flowers according to their exposure to light, the synthesis of toxic anti-predator compounds, the emission of attractive pheromones for allied species or alarm pheromones intended for neighbouring plants of the same species, in case of aggression.

Octopus learning ability
Figure 4. Common octopuses are known for their propensity to explore and ‘manipulate’ new objects, their excellent visual memory and their learning abilities. [Source: Albert Kok at Dutch Wikipedia (Original text: Albert Kok), Public domain, via Wikimedia Commons]
While it exists in plants, which have no real sense organs, behavioral plasticity is a general property of animals. It increases with their learning capacities (cognitive and practical abilities), as well as with their sociality (complexity of social groups) and mobility. It has been observed in some social invertebrates, such as the Honey Bee, and in non-social invertebrates, such as the common octopus, and peaks in mammals and birds, which have high cognitive capacities, high energy requirements and often complex social systems [4].

Physiological tolerance, morphological or physiological adjustments and behavioural flexibility are three types of mechanisms that allow individuals to respond adaptively to habitual variations in their environment. These mechanisms contribute to the adaptive potential of species to changes in their habitats and living conditions, whether these are caused by other “actors”-humans, in the case of most current environmental changes – or by their own activities (see Focus on From niche construction to the destruction of ecosystems).

1.2. Habitat stability and demogenetic strategies

On a larger time scale, covering several generations, the biological characteristics of species can also evolve in response to fluctuations in the environment that cannot be predicted at the individual level.

The mechanisms of long-term adaptation of species to variations in their habitats are not only demographic but also genetic, since they rely on the diversity and genetic evolution of populations. Research in evolutionary ecology has confirmed since the pioneering work of Mac Arthur and Wilson [5] in this field that the “demogenetic strategies” (both demographic and genetic) of species are adapted to the relative frequency of catastrophic-type events, inflicting high mortality on populations.

Evolution unpredictable environment
Figure 5. The demographic strategies r and K summarize the adaptations of species to either colonize temporary habitats (left side of the diagram) or compete in predictable and saturated habitats (right side of the diagram). They correspond respectively to the initial stages and the saturation plateau of the logistic relation Nt = K / [1+exp(-rt)], which describes the dynamics of occupation of a habitat by a population over time t. With Nt: number of individuals; K: carrying capacity of the habitat for the considered species; r: intrinsic growth rate of the population. Left: newly hatched ‘firebugs’ (Pyrrhocoris apterus) larvae before dispersal [Source: © Anne Teyssèdre]. Right: Burchell’s Zebra in the savannah, Zimbabwe [Source: © Sébastien Barot].
Depending on the magnitude and predictability of the environmental changes, spread over several generations, two main demogenetic strategies may be schematically distinguished (see Figure 5):

  • one, based on “quantity“, of rapid multiplication of individuals (known as “r“, for reproduction) and random dispersal, in temporary habitats that are unpredictable at  individual scale
  • the other, based on “quality“, with late and limited but competitive reproduction (known as “K“), in more predictable and saturated habitats.

According to Pianka [6], the main life traits favored by r-type selection are:

  • reproduction at an early age, associated with a short lifespan and small size,
  • high fecundity,
  • early dispersal of offspring (seeds, eggs, larvae…), by passive or active mobility.

And the life traits associated with the “K” strategy are:

  • late reproduction, correlated with a long life span and large size,
  • low fecundity,
  • care of juveniles, in animals [7], [8], [9]

Furthermore, the genetic diversity of species increases with the number of individuals; thus, it increases with the area of favorable habitats, with their connectivity, and with the intrinsic growth rate of populations.

The ‘r’ strategy, in response to episodic decimation

Global changes fungus
Figure 6. Colonization of nutrient-rich nectarines by microscopic fungi known as ‘moulds’. [Source: Roger McLassus 1951 assumed (based on copyright claims), CC BY-SA 3.0, via Wikimedia Commons]
This is the usual strategy of microorganisms – such as bacteria, protists, fungi… and viruses! – inhabiting temporary habitats (animal or plant hosts, seasonal habitats, organic waste…), as well as of macroscopic algae and fungi, able to quickly colonize any new favorable habitat.

Taking advantage of the fecundity and mobility of individuals, rather than of their adaptations and skills in terms of local survival, the “r” strategy (of rapid multiplication and dispersal) allows small prolific species to rebound after local decimation. Random migration and genetic mutation accelerate their genetic evolution and adaptation to the diversity (and unpredictable spatial distribution) of their potential habitats. The “random dispersal” of large numbers of close related individuals following the “r” strategy favours the discovery and exploitation of new resources (e.g. a new host species) by some of them, and thus the adaptation to new living conditions. These characteristics increase the probability of long-term survival of species (metapopulations) adapted to unstable habitats [10].

In plants, this ‘r’ strategy is used by many annuals and grasses, which disperse pollen and seeds in large quantities over good distances (via wind or animal transport) and rapidly colonise open habitats before being browsed, trampled, burnt, wilted or replaced by other, more competitive and long-lived species.

Invertebrates overall fertility changes
Figure 7. Foreshore. Like most marine ‘invertebrates’, mussels, periwinkles, cuttlefish and cirripedes are highly fecund ‘r’ species. [Source: © A. Teyssèdre]
In animals, this strategy is adopted by most insects and other ‘invertebrates’ with early maturity, high fecundity and great dispersal capacities of eggs, larvae or adults. Fish, often with high fecundity and subject to high predatory pressures, may also follow this strategy to a lesser extent. Less radical in birds and mammals, all of which provide care for their young and whose females have limited fecundity, the ‘r’ strategy is shown by many species of small mammals that are subject to wide fluctuations in their population numbers, such as rodents.

This capacity for resilience and rapid evolution of populations, which increases with their intrinsic growth rate and genetic diversity, seems to be a strength of microorganisms and other prolific species in the face of current global changes. This is how bacterial strains resistant to certain antibiotics, fungal lines resistant to antifungals, herbicide-resistant messicolous plants and insecticide-resistant “pest” insects appear from time to time and then flourish (see Focus on The demogenetic strategy of bees).

The ‘K’ strategy, poorly adapted to the disruption of habitats

Hippo fertility overall changes
Figure 8. Female hippo and her calf. Like most large ungulates (antelopes, bighorn sheep, horses, rhinoceroses, ..), female amphibian hippos reach sexual maturity between 4 and 7 years of age and give birth to a single calf after a long gestation period (8 months) – at a rate of one calf every two or three years in their case. [Source: Jnissa, CC BY 2.0, via Wikimedia Commons]
In contrast to the ‘r’ strategy, the demogenetic (‘K’) strategy is that of long-lived, low-fertility mammals, such as ungulates, marine mammals, and great apes, which raise at best one calf per year in relatively small populations (low genetic diversity). This strategy can penalise them in the face of upheavals in their living conditions (see Focus on Adaptations to climate change on the dynamics of mammals). The survival of populations then depends on the intensity of local and regional upheavals, as well as on the physiological and behavioural plasticity of individuals.

It should be noted, however, that the fecundity of sexual species varies, among other factors, with the capacity of females to invest time and energy in the survival and reproduction of each of their offspring. In the absence of parental care, natural selection favours the most fertile females.

Thus, in plants with limited parental capacities, the strategy of large, long-lived species such as trees, which are adapted to the stable and saturated habitats of forests, is accompanied by good fecundity that increases with the size and age of the individuals. Similarly, with little capacity to protect their eggs, which are dispersed at sea, the females of large pelagic fish species such as tuna and cod invest in numbers (high fecundity) and not in the individual survival of their offspring.

In general, the complexity of the evolutionary strategies of species increases with the diversity of their interactions. For example, despite their small size and the high fecundity of the (few) reproductive females, eusocial species such as honeybees, termites and naked mole rats are more ‘K’ than ‘r’ strategists, since they restrict their reproduction (to a small fraction of the colony members) and rely on collective young rearing and intragroup cooperation to increase the predictability of their environment, and thus the permanence of their colonies (see Focus on Adaptations to habitat anthropization).

2. Adaptation potential and global change

We may distinguish three main factors of species adaptation to environmental changes:

  • the genetic diversity of populations, a reservoir of possible responses to unpredictable changes in the environment,
  • their “intrinsic” growth rate, which favours their resilience after decimation, and
  • the phenotypic plasticity (morphological, physiological and behavioural) of individuals.

While prolific and small species (type ‘r’), in all systematic groups, often combine the first two factors, the third characterizes animal species with high cognitive capacities, such as mammals and birds. However, these are partly ‘K’ species of large size and low fecundity, with small numbers, poorly equipped on the ‘demogenetic’ level to cope with large and rapid changes in their environment. Under these conditions, can we predict the dynamics of species and communities in response to current global changes, which can be characterized by their diversity, ubiquity and speed?

2.1. What are the main species responses?

Deer biodiversity global change
Figure 9. Deer at the edge of a wood. Gleaning its food in forests as well as in fields and meadows, taking advantage of the absence or rarity of wolves and other large predators, the roe deer is a generalist species in expansion in Europe. [Source: Sylvouille at French Wikipedia, CC BY-SA 1.0, via Wikimedia Commons]
Depending on the biological and demographic characteristics that underpin the species’ potential for adaptation, one may anticipate and verify in the field:

  • the expansion of generalist species (‘r’ and ‘K’, including our own!), in all ecosystems modified by human activities – the case of wild boar, roe deer, great tit, woodcock and crow in Europe; the case of olive baboons in central Africa… ;
  • the resilience of prolific ‘r’-type species (with high fecundity, early reproduction, high mobility of juveniles or adults), after local or regional decimation – illustrated for instance by the episodic infestations of migratory locusts, corn borers, ground voles and other so-called ‘crop pests’ in intensive monoculture regions;
  • the adaptation and rapid genetic evolution, or even speciation, of ‘r‘ species confronted with new living conditions, in modified ecosystems – the case of new antibiotic-resistant bacterial lines and recombinant viruses involved in infectious disease epidemics, which have been on the increase for several decades [11]; the case of pesticide-resistant insects and annual plants (see Focus on Adaptations to habitat anthropization) [12] ;
  • the slower behavioural adaptation and genetic evolution of generalist ‘K’ species, commensals of humans, expanding in these modified ecosystems – this is expected for the expanding ‘K’ species mentioned above: deer in Europe, savannah baboons in Africa… ;
caterpillar climate change
Figure 10. Pine Processionaries. On the left Processionary caterpillar nests in a Scots pine. [Source: © Traumrune / Wikimedia Commons; Right, Processionary caterpillar line in the forest. [Source: Lamiot, CC BY-SA 3.0, via Wikimedia Commons]. With a high fecundity (for adult moths) and a good appetite for pine needles (for caterpillars), populations of pine processionaries (Thaumetopoea pityocampa) are taking advantage of climate change to expand their range at higher elevations and northward.
  • the more or less rapid displacement of ‘r’ and ‘K’ species to more favourable living conditions in response to global warming – for example, the displacement of bark beetles (xylophagous beetles), leafrollers (phytophagous caterpillars) and other so-called ‘forest pests’ towards the poles and at higher altitudes.

But also:

  • the decline and disappearance of many specialist ‘K’ species, weakened by the fragmentation and/or progressive transformation of their habitat and unable to rebound after local decimation (see the focus on Mammals and global change, on the dynamics of mammals),
  • the rarefaction and disappearance of a fraction of ‘r’ species, mainly specialists, confronted with the disappearance or radical transformation of their habitats and resources (e.g. invertebrates and fish in coral reefs, insects in regions of intensive agriculture);
  • orangutans climate change habitat
    Figure 11. Orangutans, in captivity. Infatuated with the rainforests of Southeast Asia, orangutans are seeing their habitat shrink as agricultural land expands. With a specialized diet (leaves), high energy needs  and a low fecundity, the species survives in a few declining populations and in captivity. [Source: © Anne Teyssèdre]
    the eventual decline of generalist ‘K’ populations and species, overwhelmed by the scale and speed of the transformations of their habitats and living conditions (See the focus From niche construction to the destruction  of ecosystems).

Expected on a theoretical level, these various dynamics are observed in the field (See Focus Adaptations to habitat anthropization, Adaptations to climate change and Mammals and global change), especially in mammals [13].

2.2. What are the dynamics of communities and ecological networks?

In all ecosystems modified by human activities, the expansion of generalist species at the expense of specialist species should result in a homogenisation of regional faunas and floras [14], [15] and a decline in the total number of species on a global scale (unless there is sufficient diversification through speciation in isolated emerging habitats, cf. [16]).

habitat species decline
Figure 12. Temporal Monitoring of Common Birds (STOC), since 1989: STOC indicator by habitat type. While generalist species are expanding in France (and elsewhere), species specialising in agricultural and other habitat types are declining. As a result, the specialization index of local bird communities has been declining over the years, for several decades. [Source: CRBPO, Vigie-Nature, MNHN]
Thus in Europe, in response to the intensification of agriculture, generalist bird species (chickadees, starlings, carrion crows, wood pigeons…), which frequent fields as well as towns, villages and/or forests are in expansion in (degraded) fields for twenty years. Conversely, birds specialist of agricultural environments (e.g., linnets, hoopoes, grey partridge, crested lapwings, etc.) are rarifying (see fig.12). To monitor this dynamic in bird community composition, researchers have developed a community specialisation index, which increases with habitat disturbance [17] and confirms the homogenization of France’s bird populations over the past 20 years [14] and [18].

Ecosystems are complex organized systems of limited resistance and resilience, formed by networks of co-adapted species, evolving in interaction with each other and with their physical environment for many generations. The rapid change in community composition, coupled with the different rates of adaptation of species to changes in their environment (among which climate changes), are desynchronizing and disorganizing these networks. These changes increase the risks of ecosystems switching to another steady state, unfavorable to many species often including humans [19], [20] (Figure 13).

Climate change ecosystem modification
Figure 13. Diagram of the shift of an ecosystem from one (stable) state A to another (stable) state B of lower complexity, connectivity, productivity and/or biomass, under the effect of a pressure or forcing (anthropogenic or not). Since both states – or operating regimes – A and B are stable over a wide range of pressures, a shift into the bistability zone (orange arrow) is generally irreversible. (In other words, switching the ecosystem from state B to state A requires a high forcing intensity). [Source: © A. Teyssèdre]
chain of ecosystem shifts may be observed throughout the Mediterranean region, for example, where the overexploitation of forests and local overgrazing by livestock for several centuries has caused many local forest ecosystems to shift to a bushy state (scrubland, maquis) with low evapotranspiration, and therefore poor regulators of the local climate. Further pressure on this state in turn increases the risks of a shift towards desertification, through overgrazing and aridification of the climate – accentuated by the current global warming. This dynamic of successive shifts of local ecosystems towards a stable state of lower productivity, complexity or trophic diversity, harms not only many “non-human” species – especially mammals and birds – but also the exposed human populations.

Climate change jellyfish swarm
Figure 14. Pullulation of common jellyfish (Aurelia aurita) on a Danish coast. [Source: Photo Vandmaend, CC BY 3.0, via Wikimedia Commons]
Over time, pressures on ecological communities and networks increase as human societies take over land and “resources”. In fact, the conversion or degradation of habitats rich in biodiversity (such as forests, marshes, fish-filled rivers and seas…) into impoverished habitats (cultivated fields, polluted rivers, “overfished” seas), with less biotic capacity, reduces the total amount of resources available for wildlife by at least a quarter [21]. This restriction implies not only a reduction in the abundance and biomass of the animal and plant communities concerned [22], [23], but also in the number of species [24]. It thus favours a shortening of food webs [25], [26] with an increased risk of ecosystem collapse (see focus From niche construction to the destruction  of ecosystems) and a shift to another stable state unfavourable to many species including our own [27], [28], [29].

3. Messages to remember

  • Through its many activities and interactions, each species modifies its environment and builds its ecological niche over generations.
  • Some species, known as “environmental engineers“, have a strong impact on their physical and biological habitats, and thus on the structure and functioning of local communities. One of them – ours! – has distinguished itself in recent centuries by the diversity and increasing scale of its impacts on terrestrial and aquatic ecosystems, which are currently undergoing global change.
  • The response of each species to changes in its physical and biological environment depends on external factors, such as the magnitude and frequency of these changes, and internal factors, such as its behavioural plasticity and reproductive fecundity.
  • Species are adapted to the variability of living conditions to which individuals are usually exposed, over many generations. Their ecological niche is therefore more or less wide or narrow, reflecting these variations: they are more or less generalists or specialists.
  • In addition, they are adapted to the frequency of extreme events, which decimate populations, by their demographic dynamics.
  • We can thus distinguish species according to their “demogenetic strategy“, adapted or not to the extent and speed of the global changes underway.
  • Ecosystems and ecological networks, made up of numerous species interacting with each other and with their habitat, are complex, organized and adaptive systems with limited resilience.
  • Beyond a certain threshold of disturbance, ecosystems switch to another state, characterized by a different structure (species networks) and a different operating regime.
  • This is currently the case for many ecosystems faced with global changes. These ecosystem chain shifts are not only detrimental to many species but also to human societies, which are victims of their increasing pressure on ecosystems and the biosphere.

This article is a revised, adapted and updated version of the article “Quelles réponses des espèces et communautés écologiques aux changements globaux?” (R80a) by the same author, dated June 2018, online on the interactive platform of the Société Française d’Ecologie et Evolution (SFE2, https://www.sfecologie.org/regards/). (Regard edited by Sébastien Barot, SFE2, in February 2018).

 


Notes and references

Cover image. Pullulation of common jellyfish (Aurelia aurita) on a Danish coast [Source: Photo Vandmaend, CC BY 3.0, via Wikimedia Commons]

[1] Catastrophic event, for a population: inflicting high mortality.

[2] Hutchinson GE. 1957. Concluding remarks. Cold Spring Harbor Symp Quant Biol 22:415-27.

[3] Tollrian R, 1990. Predator-induced helmet formation in Daphnia cucullata (SARS). Arch Hydrobiol 119(2):191-196.

[4] Teyssèdre A., 2006. Les clés de la Communication animale. Delachaux et Niestlé, Paris.

[5] MacArthur R.H. & E.O. Wilson, 1967. The theory of island biogeography. Princeton Univ. Press, Princeton, NJ.

[6] Pianka E.R., 1970. On r and K selection. Am. Nat. 104:592-597.

[7] Reznick D., M.J. Bryant & F. Bashey , 2002. R- and K-section revisited: The role of population regulation in life history evolution. Ecology 83(6):1509-1520.

[8] Beaumont H.J.E., Gallie J. et al. 2009. Experimental evolution of bet hedging. Nature 462:90-92.

[9] Botero C.A., F.J. Weissing, J. Wright & D.R. Rubenstein, 2015. Evolutionary tipping points in the capacity to adapt to environmental change. Proc. Natl. Acad. Sci. USA 112:184-189.

[10] Starrfelt and Kokko 2012. Bet hedging: a triple trade-off between means, variances and correlations. Biol. Rev. 87, pp. 742-755.

[11] cf. Regards R18 and RO11

[12] cf. Regards R92

[13] Teyssèdre A., 2018. Les mammifères face aux changements globaux. Regards et débats sur la biodiversité, SFE, regard R80b, June 2018.

[14] McKinney M.L. & J.L. Lockwood, 1999. Biotic homogenization: a few winners replacing many losers in the next mass extinction. T.R.E.E . 14:450-453

[15] Clavel J., Julliard R. and V. Devictor, 2010. Worldwide decline of specialist species: toward a global functional homogenization? Front. Ecol. Environ. 2:222-228.

[16] Thomas C.D., 2015. Rapid acceleration of plant speciation during the Anthropocene. Trends Ecol. Evol. 30:448-455.

[17] Julliard R., J. Clavel et al. 2006. Spatial segregation of bird specialists and generalists in bird communities. Ecol. Letters 9:1237-1244.

[18] Clavel J., 2011. L’Homogénéisation biotique. Regards et débats sur la biodiversité, SFE, regard n°16, April 2011.

[19] Folke C., S. Carpenter et al. 2004. Regime shifts, resilience and biodiversity in ecosystem management. Ann. Rev. Ecol. Syst. 35:557-581.

[20] Cardinale B. et al. 2012. Biodiversity loss and its impact on humanity. Nature 486:59-67.

[21] Haberl H., 2007. Quantifying and mapping the human appropriationof net primary production in earth’s terrestrial ecosystems. Proc. Natl. Acad. Sci. USA 104:12944-12947.

[22] Gaston K.J., T.M. Blackburn, K. Klein Goldewijk, 2003. Habitat conversion and global avian biodiversity loss, Proc. R. Soc. Lond. B 270:1293–1300.

[23] Smil V., 2011. Harvesting the Biosphere: the Human Impact. Pop. Dev. Rev. 37(4):613-636.

[24] Teyssèdre A. & D. Couvet, 2007. Expected impact of agriculture expansion on the world avifauna. C. R. Acad. Sci. Biol. 330:247-254.

[25] Pauly D, V. Christensen V, J. Dalsgaard J, R. Froese & F.S.B. Torres, 1998. Fishing down marine food webs. Science 279:860-863.

[26] Watson R. & D. Pauly, 2001. Systematic distortions in world fisheries catch trends. Nature 414(6863):534-536.

[27] Folke C., S. Carpenter et al. 2004. Regime shifts, resilience and biodiversity in ecosystem management. Ann. Rev. Ecol. Syst. 35:557-581.

[28] Cardinale B. et al. 2012. Biodiversity loss and its impact on humanity. Nature 486:59-67.

[29] See Biodiversity Outlooks R30, R31, R37 and R46.


环境百科全书由环境和能源百科全书协会出版 (www.a3e.fr),该协会与格勒诺布尔阿尔卑斯大学和格勒诺布尔INP有合同关系,并由法国科学院赞助。

引用这篇文章: TEYSSEDRE Anne (2021年8月31日), Biodiversity responses to global changes, 环境百科全书,咨询于 2024年12月22日 [在线ISSN 2555-0950]网址: https://www.encyclopedie-environnement.org/en/life/biodiversity-responses-to-global-changes/.

环境百科全书中的文章是根据知识共享BY-NC-SA许可条款提供的,该许可授权复制的条件是:引用来源,不作商业使用,共享相同的初始条件,并且在每次重复使用或分发时复制知识共享BY-NC-SA许可声明。