植物是如何忍受含盐环境的?

 

      土壤受到诸如海浪冲刷等影响时会自然盐碱化。但盐碱化也可能是人类活动的结果。后一种盐碱化影响了全世界2.6亿公顷灌溉土地中的20%至30%。尽管大量的钠离子具有细胞毒性,许多植物仍然能够在盐碱条件下(例如海边)自然生长。然而,大部分的植物,尤其是农作物,如水稻——对土壤中过量的盐敏感。这是一个受到国际研究关注的食品安全问题。经过几十年的研究,人们对植物的盐度毒性和适应机制有了很好的了解。现在,这一知识被适时地运用,以获得更加耐受土壤盐分的水稻新品种。为何不把盐水灌溉谷物作为一个法宝呢!

1.植物与盐分

1.1.耐性植物

环境百科全书-生命-嗜盐植物
图1. 嗜盐植物。A,海蓬子(Salicornia europaea);B,海刺(Euphorbia paralias);C,沙发草(Elymus farctus);D,海百合(Pancratium maritimum)。[来源:A,Jürgen Howaldt/CC BY-SA 2.0 DE/B,Jean-Tosti GNU许可证/C,Stephano/CC BY-NC-SA 2.0;D,Zeynel Cebeci/CC BY-SA 3.0]

       海浪飞沫由悬浮在空气中的海水水滴组成,它喷洒在海岸的植被上,使其生长的土壤盐碱化。这些植物被称为“嗜盐”,意思是“喜欢盐”。[1]“盐生植物”是指生长在异常高浓度盐分环境中的植物。例如生长在海岸、沙漠、盐沼或盐湖中的植物。

  在盐沼中生长着海蓬子属植物(Salicornia sp.),其中包括大约30种可食用的物种,在沙丘上还可以找到海刺(Ephorbia paralias)、沙发草(Elymus farctus)或壮观的海百合(Pancratium maritimum)。

环境百科全是-生命-盐碱地羊场
图2. 圣米歇尔山附近的盐碱地羊场(法国曼切)[来源:Jean-Paulo de Souza Henrique/CC BY-SA 4.0]

       在其他纬度地区,如潮湿的热带和赤道气候区,红树林植被在微咸水中生根,说明了嗜盐草或灌木的耐盐能力。

  盐生植物可以耐受500mM至1M范围内的盐浓度,从而提高了钠离子Na+毒性管理机制的有效性[2]。一些植物,如欧洲海蓬子,需要这种离子才能生长,它们被称为严格的盐生植物。

  这些与众不同的的生态系统适用于发展农业;例如,盐碱草甸牧区(图2)这一农业实践,用适应土壤盐分、洪水和干旱的嗜盐植物饲养绵羊。这些植物包括海碱茅(Puccinellia maritima,一种草)、海韭菜(Triglochin maritima)或马齿合淀藜(Halimione portulacoïdes)。

1.2.敏感植物

环境百科全书-生命-水稻Na+毒害引起的叶片症状。
图3. 水稻植株因Na+毒害而引起的叶片症状。盐敏感(右)和耐盐(左)品种生长在添加有NaCl的水培溶液中。敏感品种表现出明显的生长迟缓和烧叶现象。研究人员利用同一物种内耐盐水平的变异性来确定与耐盐性有关的基因和机制。[来源:©国际水稻研究所/CC BY-NC-SA 3.0];图中:Salinity盐度;Tolerant耐受的;Susceptible敏感的

       虽然盐生植物可以在盐渍土中生长,但其他不适应这些极端条件的植物却无法做到这一点。它们是在无盐环境中生长的“甜土植物”或“糖生植物”。植物对盐胁迫具有广泛的耐受性。例如,在谷类作物中,水稻(Oryza sativa)最敏感(图3),其次是硬粒小麦(Triticum turgidum ssp.durum)和面包小麦(Triticum aestivum),大麦(Hordeum vulgare)是最具耐受性的[3]

       在盐渍土中,非嗜盐植物的生长和发育会受到影响。这是由于土壤中存在过量的可溶性盐,主要是钠离子(Na+)。盐害的可视症状是叶尖失绿,随后是叶焦、褐变和叶片死亡。这会导致植物生长迟缓、根系发育不良、不育以及种子产量减少。

       土壤盐碱化的蔓延是一个重大的环境问题:每年,全世界有1000万公顷的农田被土壤盐碱化破坏。气候变化、过度使用地下水、劣质灌溉水的滥用、在半干旱至干旱气候区进行大规模灌溉以及土壤淋溶的缺乏都会加剧土壤盐碱化现象(见“土壤盐碱化”)。几十年来,植物生物学研究使人们更好地了解与盐分相关的毒性机制以及使植物能够适应盐分的机制(参见“植物生物技术和作物耐盐性”)。

2.钠离子Na+对植物细胞的毒性

  土壤中高浓度的钠离子会对植物的生长发育产生一系列有害的影响:

       一方面,土壤溶液中的高浓度盐会增加其水势[4];进而破坏植物通过根部获取的水分和营养

       另一方面,植物无法阻止钠离子长期进入其根细胞并转移到地上部分,导致大量的细胞中毒

       因此,一个两相模型可用来解释过量钠离子造成的有害机制:

       前期效应与外部渗透压增加有关;

       后期效应与细胞内钠离子的积累有关。

2.1.水、盐和水势

  土壤中的盐会影响其水势。这种势能是在土壤中释放1g水所必须施加的能量。水势总是负的,并且水势越低,水和土壤之间的结合就越强[5]。纯水的水势为0;但土壤中的水不是纯净的,含有溶质,溶质是土壤中水势下降的原因。因此,土壤水势被定义如下:

  根据其含水量来定义。水分充足土壤的水势值约为-0.1 兆帕,而干燥土壤的水势值约为-1 兆帕。

  根据土壤中的溶质浓度来定义。在被150 mM NaCl盐溶液污染的土壤中,该值可达到约-0.4 兆帕。

  为了理解这些物理化学参数在盐度问题中的重要性,必须考虑根细胞的水势。在正常条件下,根细胞的水势值约为-0.5兆帕。

环境百科全是-生命-水势差
图4. 在盐渍土中,与盐相关的渗透压降低了土壤和根系之间的水势差。因此,流入根部的水量减少。这减少了植物生长和产量所需的水分。[来源:改编自Rengasamy等人的EEnv方案,见参考文献7]图中Water potential,MPa水势(兆帕),High water potential gradient高水势梯度,Low water potential gradient低水势梯度,High water uptake高吸水率,Low water uptake低吸水率,A-Non-saline soil非盐渍土B-Saline soil盐渍土

  水的运动从最高电位到最低电位(换句话说,从最小负电位到最大负电位)。土壤和植物细胞之间的水势差(0.4兆帕)将允许水分从土壤(-0.1兆帕)流向到根细胞(-0.5兆帕)(图4A)[6]

  当土壤被150 mM NaCl盐溶液污染时,水势差减小至0.1 MPa(图4B)。水势差是水流过细胞膜的驱动力之一。可以估计,除了细胞对盐度的适应性反应外,这种驱动力在盐度条件下将水分从土壤转移到根系内部的效率是正常条件下的4倍!

  在极端情况下,土壤含盐量会更高,理论上可以看到水分从根细胞进入盐渍土,植物通过根系脱水!这种现象让人联想到水合应力,水合应力可能有多种诱导因素(干旱、霜冻等),当土壤无法向根部提供足够的液态水以确保叶片组织的水合和蒸发时,就会出现水合应力(见“植物的固定寿命及其限制”)。

  盐分的渗透作用所引起的损害不仅影响细胞的膨胀性,而且诱发会类似于水分胁迫引起的代谢变化。例如,渗透胁迫对植物的生长速率有直接影响。

2.2.盐度、光合作用和氧化胁迫

环境百科全是-生命-烟草植株在含或不含NaCl的培养基中生长60天
图5. 烟叶染色显示活性氧物种或活性氧(H2O2)的积累。烟草植株在含或不含NaCl的培养基中生长60天(上图)。然后将叶片转移到含有3,3′-二氨基联苯胺(DAB)的培养皿中。通过DAB可以显示在NaCl中生长的组织中H2O2的积累情况。图中Control控制1.Culture of tabacco plants in presence of NaCl.1.在NaCl存在的环境下培养烟草植物。2.Leaves transferred on a 0.1%DAB-containing medium.2.叶子转移到含有0.1%DAB的培养基上。3.ROS coloration.3.ROS染色。

  除了遭受渗透胁迫,使根细胞无法正常吸收水分之外,植物还必须应对其叶片部分的生理紊乱:

  由于气孔关闭(由脱落酸激素控制的现象)和二氧化碳固定的抑制,光合作用发生改变;

  电子通过光系统II的线性转移被抑制,光系统I内电子的循环转移被激活;

  为了以荧光形式排出多余光能而建立的非光化学猝灭保护机制被加强[7](参见“Z-光合作用”)。

  光合作用紊乱的直接后果是产生活性氧(ROS)和表达参与氧化应激管理的酶,以防止对光系统、脂质、蛋白质和核酸的损害。然而,其中一种活性氧——过氧化氢(H2O2)在耐盐环境中也具有细胞信号作用。因此,活性氧的产生、酶对活性氧的消除和细胞信号传递所需的足够数量的活性氧之间存在一种协调机制(图5)[8]

2.3.为什么钠离子Na+有毒

环境百科全是-生命-盐胁迫条件下  Na+对植物细胞功能的影响。
图6. 盐胁迫条件下钠离子Na+对植物细胞功能的影响。[来源:©EEnv图表]
图中The massive entry of Na+ in the cytosol induces plasma membrane depolarisation 钠离子Na+大量进入细胞质引起质膜去极化;Salinity enhances competition between Na+&K+ 盐度增强了钠离子Na+与钾离子K+之间的竞争;K+deficiency 钾离子K+缺乏;Na+ competes with K+ for binding to proteins,without performing the same functions 钠离子Na+与钾离子K+竞争与蛋白质的结合,而具有不同的功能;Depolarisation induces a spectacular augmentation of K+ leaking outside the cell去极化诱导细胞外钾离子K+大量渗漏;Aquaporins (water channels) are involved in Na+ entry within the cell 水通道蛋白(水通道)参与细胞内钠离子Na+的进入。

       钠离子Na+的特殊毒性可能是由于其物理化学性质接近于K+)。在所有生物中,钾K+细胞质中的主要无机阳离子,其浓度(约0.1 M)通常比Na+高几倍。它在植物生理学中起着至关重要的作用。由于其细胞内的丰富性,它是蛋白质和核酸负电荷的主要无机反离子,还具有激活50多种酶反应的功能[9](参见“钾和钠:异卵双胞胎”)。

  在盐环境中,Na+大量进入植物的细胞质会导致一系列反应(图6)[10]

  钠离子Na+与钾离子K+竞争根细胞对钾离子K+的吸收,因为两种离子通过几个相同的转运系统(NSCC型非选择性阳离子通道和HKT高亲和力转运蛋白)跨质膜进行转运。这种现象在盐胁迫情况下会加剧

  钠离子Na+对细胞表面具有有害影响,因为它严重破坏了质膜的电极化。这种去极化通过由其激活的钾离子K+通道(称为KOR的通道),导致细胞外的钾离子K+渗漏显著增加。

  钠离子Na+与钾离子K+竞争,与重要的蛋白质结合,而不执行与后者相同的功能。因此,细胞质中过量的钠离子会抑制许多酶反应的活性,从而导致细胞功能障碍,例如影响植物的光合活性。

       近期的数据表明,质膜上已知功能主要为运输水分和中性溶质的水通道蛋白(水通道)也参与了钠离子Na+进入细胞的过程!

       因此,尽管土壤中存在钾离子K+,但可以说盐分依然能导致植物缺乏这种养分

3.植物耐盐机制

3.1.什么是盐胁迫?

环境百科全是-生命-与盐胁迫毒性和为确保耐受性而建立的细胞反应相关的有害影响。
图7. 与盐胁迫毒性和为确保耐受性而建立的细胞反应相关的有害影响。在嗜盐植物中,土壤中过量的盐会引起离子胁迫、氧化胁迫和渗透胁迫,它们必须采取措施来管理这些胁迫,以保持(A)氧化胁迫分子处于可接受的水平,(B)渗透平衡,以及(C)离子稳态。[来源:©EEnv图表]图中SALINITY STRESS盐胁迫,Oxydative stress氧化应激,Detoxification strategies解毒策略,Osmotic stress渗透胁迫,Inhibition抑制作用,Water transport水输送,Growth生长,Photosynthesis光合作用,Osmotic ajustment渗透调节,Accumulation of solutes溶质积累,Ionic stress离子胁迫,K+ deficiency/excess Na+ influx钾离子缺乏/钠离子过量流入,Enzymatic activity酶活性,Protein synthesis蛋白质合成,Leaf senescence叶片衰老,Ion homeostasis离子稳态,Na+ extrusion钠离子排出,Na+ exclusion钠离子排斥,钠离子compartmentalization Na+区室化

  植物已经发展出多种生物化学和分子机制来抵抗土壤盐分的不利影响。盐胁迫的成分可分为三类[11]

  盐胁迫期间遇到的氧化胁迫必须通过保护和损伤修复机制在细胞水平上进行管理。

       对渗透胁迫的反应使植物通过兼容溶质的生物合成和水通道蛋白(水通道)来维持水的动态平衡。

  这些机制涉及钠离子Na+和/或钾离子K+转运系统的功能和调节,这些转运系统参与了对离子胁迫的响应(图7)[12]

3.2.针对氧化胁迫的解毒策略

  在玉米幼苗中,盐胁迫引起的氧化胁迫主要发生在成熟的根和叶中,幼叶中的氧化胁迫程度较小(图7A)。各种解毒策略随之而来:

  H2O2含量和细胞膜氧化损伤标志物(电解质渗漏和脂质过氧化)增加。

  抗氧化分子(多酚、类黄酮、抗坏血酸等)和抗氧化酶活性(过氧化氢酶、超氧化物歧化酶、过氧化物酶)在细胞中积累。

  通过这种方式,ROS保护机制可以在整个植物中被激活,就像在许多其他胁迫情况下一样(参见“植物如何应对高山胁迫?)。

3.3.如何保持水的稳态?

  维持植物组织中的水分平衡(也称为水分动态平衡)对植物的生长和发育至关重要。水分通过气孔的蒸腾作用流失,通过根系吸收获得。因此,水的动态平衡由水的供应来保证,但也由植物细胞保持水分的能力来保证。

  在渗透胁迫条件下,水分稳态受到干扰(见图4),植物细胞会在细胞质中积累相容的溶质以平衡渗透压(图7),如蔗糖、脯氨酸和甘氨酸甜菜碱。例如,脯氨酸的积累被描述为在盐胁迫下大量植物中的无毒和保护渗透压的过程

3.4.维持离子平衡?

环境百科全是-生命-盐胁迫
图8. 植物在根细胞中实现离子稳态的策略,使其能够耐受盐胁迫。[来源:©EEnv图表]
  (图8 Extruding the internal Na+ outside of the root cell-SOS1 SOS1蛋白将内部钠离子Na+排出根细胞的外部;Compartmentalizing Na+ into vacuole-NHX1 NHX1蛋白将钠离子Na+区室化到液泡;Preventing Na+ entering plant cells防止钠离子Na+进入植物细胞;Preventing Na+ moving into the shoot and leaves-HKT1 HKT1蛋白防止钠离子Na+进入茎和叶中;Allowing the return of Na+ ions back to the roots-HKT1 HKT1蛋白允许钠离子Na+返回根;Accumulating K+ to maintain a high K+/Na+ ratio-ADT1,HAK1,HAK5…ADT1、HAK1、HAK5等蛋白积累钾离子K+以保持较高的钾离子K+/钠离子Na+比率)

  对水稻基因组的分析已经确定了水稻耐盐基因[13]

       其中一个基因编码的钠离子Na+转运蛋白参与钾离子K+(一种必需元素)和钠离子Na+(一种有毒元素)之间的稳态。这一重大发现突出了这两种离子的转运系统在耐盐现象中的重要性。

  对于能够耐受盐胁迫的植物,重要的是根细胞质中的钾离子K+/钠离子Na+比率,因此这些细胞含有极少量钠离子Na+(图7C)。植物通过不同的策略来实现这一目标;例如促进钠离子Na+和钾离子K+稳态的运输系统(图8)。

  将多余的钠离子Na+从根表皮细胞中排出。SOS1蛋白[14]在这一过程中发挥作用,它是迄今为止鉴定到的唯一一个定位于植物质膜上的局部钠离子Na+外流系统。

  一旦钠离子Na+进入细胞质,通过NHX1蛋白的活性,可将钠离子Na+区室化液泡[15]

  防止钠离子Na+转移到地上部分。该作用由HKT1家族的选择性钠内流转运蛋白完成。该蛋白定位于根木质部薄壁组织中,通过将钠离子保留在木质部薄壁组织细胞中的过程,达到将钠离子从木质部汁液中排出的目的。耐盐(Saltol)基因座携带着编码这种运输系统的基因。

  允许钠离子Na+返回根部。HKT1也在叶片韧皮部导管附近的细胞中;这将允许钠离子Na+从地上部分再循环,将钠离子Na+装载到韧皮部以进行回流。

  通过钾离子K+转运系统的参与对抗钠离子Na+的毒性作用。这些系统有助于维持较高的细胞溶质钾离子K+/钠离子Na+比率。例如,在水稻中,分别编码钾离子K+转运蛋白的AKT1、HAK1和HAK5基因的个体突变导致突变植株对盐胁迫的更高敏感性。这表明钾离子K+营养在土壤耐盐性中起主要作用(图8)。

4.钠对植物可以是有用的!

环境百科全是-生命-小囊滨藜
图9. 小囊滨藜,一种来自澳大利亚干旱和盐碱土壤的灌木,其生长需要盐。[来源:Mark Marathon/CC BY-SA 4.0]

       尽管钠离子Na+对植物存在毒性,它同时也是一种营养素,当钾离子K+在土壤中浓度较低时尤为如此。

  土壤中的钾离子K+浓度毫摩尔范围内时,植物可以实现最佳生长。土壤溶液中,由土壤颗粒和粘土缓慢释放的钾离子K+数量往往限制了大多数自然生态系统中植物的最佳生长。当土壤中的钾离子K+浓度非常低(微摩尔量级)时,钠离子Na+可以在某些重要功能中替代它,例如钾离子K+作为溶质维持细胞中的渗透压的功能(参见“钾和钠:异卵双胞胎!”)。

  大约90%的钾离子K+储存在液泡中,并在其中发挥渗透作用。在液泡中,钠离子Na+也能起到同样的作用;然后,细胞在细胞质中动员钾离子K+,并在其中发挥代谢作用。当土壤中的钾离子K+浓度较低时,专门表示的钠离子Na+转运系统将使植物吸收钠离子Na+,以实现这一有益用途[16]。因此,钠离子Na+可以在低浓度下刺激植物生长。

  嗜盐植物可能需要一定浓度的NaCl才能正常生长,如小叶滨藜(一种澳大利亚灌木,与法国盐碱草甸中发现的马齿合滨藜(Halimione portulacoïdes)密切相关,见图9)、紫穗稗(Echinochloa utilis,一种日本小米)或大花马齿苋(Portulaca grandiflora,一种马齿苋)。

5.要点

-在世界范围内,有20%的灌溉土地受到土壤盐碱化的威胁:

-具有农艺价值的植物对土壤盐碱的耐受性很低或根本没有耐受性;

-只有嗜盐植被适合在盐碱条件下生长。

  钠离子(Na+)是盐干扰引起毒性的主要原因:

-根系吸收水分和养分;

-叶片进行光合作用;

-但也通过积累活性氧导致氧化胁迫。

由于其相似的物理化学性质,钠离子Na+和钾离子K+竞争,后者是植物的主要营养元素。

  植物通过几个步骤对钠离子Na+的存在作出反应

-通过保护自己免受氧化胁迫;

-通过积累溶质来抵消土壤中过多钠离子Na+渗透效应

-通过限制钠离子Na+在根中的吸收,增加其在根细胞外的排出,将其限制在液泡内,并管理其从叶片的运输和排除。这种植物还改善了植物的钾营养。


参考资料和说明

封面图片:吉婆岛(Cat Bá)的稻田(越南)。[来源:©Doan Trung Luu]

[1]  嗜盐植物也被称为嗜盐植物,与在无盐环境中生长的嗜糖或“糖生”植物相反。

[2]  Flowers T.J., Galal H.K., & Bromham L. (2010). Evolution of halophytes: multiple origins of salt tolerance in land plants.Funct. Plant Biol. 37, 604-612. doi: 10.1071/FP09269

[3]  Munns R. & Tester M. (2008) Mechanisms of Salinity Tolerance. Ann. Review Plant Biol. 59: 651-681

[4]  水,从吸收到外渗(法语)

[5]  以压力单位表示,如帕斯卡(Pa)

[6]  Rengasamy P.,North S.和Smith A.(2010)莫里灌溉区土壤和水中碱度和盐度的诊断和管理。南澳大利亚州阿得雷德大学。

[7]  Stepien P. & Johnson G.N. (2009) Contrasting Responses of Photosynthesis to Salt Stress in the Glycophyte Arabidopsis andthe Halophyte Thellungiella : Role of the Plastid Terminal Oxidase as an Alternative Electron Sink. Plant Physiology 149 (2)1154-1165; DOI: 10.1104/pp.108.132407

[8]  Yadav N.S., Shukla P.S., Jha A. et al. (2012) The SbSOS1 gene from the extreme halophyte Salicornia brachiata enhances Na+ loading in xylem and confers salt tolerance in transgenic tobacco. BMC Plant Biol 12, 188. https://doi. org/10.1186/1471-2229-12-188

[9]  Bhandal I.S. & Malik C.P. (1988) Potassium estimation, uptake, and its role in the physiology and metabolism of floweringEncyclopédie de l’environnement11/11Généré le 26/10/2021plants. Int. Rev. Cytol. 110: 205-254

[10]  The general outlines of this article are original, but inspired by many pedagogical schemes. The most emblematic of them is“Teaching tools in Plant Biology (2014) Plant Nutrition 1: Membrane transport and Energetics, Potassium nutrition, and Sodiumtoxicity. DOI: https://doi.org/10.1105/tpc.114.tt0914.”

[11]  Munns R. & Tester M. (2008) Mechanisms of Salinity Tolerance. Annu. Rev. Plant Biol. 59, 651-681.

[12]  植物营养1:膜运输和能量学、钾营养和钠毒性

[13]  这种基因被称为Saltol(耐盐)。它编码HKT1家族的选择性钠内流转运体。水稻基因组在2005年被完全测序。它的基因库大约有37500个,目前都可用。任何可见和可测量的农艺性状(表型),如耐旱性、耐盐性或株高,都可能与一组基因(基因型)有关。

[14]  SOS1对盐过度敏感;这是一个Na+/H+反端口。反转运蛋白是一种膜蛋白,参与不同离子沿相反方向穿过膜(如质膜)的主动转运,其中一个方向为Na+,另一个方向为H+

[15]  这是NHX1类型的Na+/H+反端口。

[16]  Horie T., Costa A., Kim T. H., Han M.J., Horie R., Leung H.-Y., Miyao A., Hirochika H., An G. & Schroeder J.I., (2007)Rice OsHKT2;1 transport mediates large Na+ influx component into K+-starved roots for growth. EMBO J. 26, 3003-3014.

 


环境百科全书由环境和能源百科全书协会出版 (www.a3e.fr),该协会与格勒诺布尔阿尔卑斯大学和格勒诺布尔INP有合同关系,并由法国科学院赞助。

引用这篇文章: LUU Doan Trung (2024年3月14日), 植物是如何忍受含盐环境的?, 环境百科全书,咨询于 2024年12月21日 [在线ISSN 2555-0950]网址: https://www.encyclopedie-environnement.org/zh/vivant-zh/how-plants-tolerate-salty-diet/.

环境百科全书中的文章是根据知识共享BY-NC-SA许可条款提供的,该许可授权复制的条件是:引用来源,不作商业使用,共享相同的初始条件,并且在每次重复使用或分发时复制知识共享BY-NC-SA许可声明。

How do plants tolerate a salty diet?

Soils can become naturally saline, for example due to sea spray. But they can also be saline due to human activities. The latter phenomenon is a problem affecting 20 to 30% of the 260 million hectares of irrigated land worldwide. A number of plants grow naturally in saline conditions, by the sea for example, despite the cellular toxicity of the sodium ion present in large quantities. However, the majority of plants – especially those used in agriculture, such as rice – are sensitive to excess salt in the soil. This is a food safety issue that is of concern to international research. Several decades of research have led to a good understanding of salinity toxicity and adaptive mechanisms in plants. This knowledge is now opportunely being put to good use to obtain new varieties of crops that are more tolerant to soil salinity; with, why not, cereal crops irrigated with salt water as a holy grail!

1. Plants and salt

1.1. Tolerant plants

plantes - plantes halophiles
Figure 1. Halophilic plants. A, Glasswort (Salicornia europaea); B, Sea spurge (Euphorbia paralias); C, Couch grass (Elymus farctus); D, Sea daffodil (Pancratium maritimum). [Source: A, Jürgen Howaldt / CC BY-SA 2.0 DE / B, Jean Tosti GNU license / C, Stephano / CC BY-NC-SA 2.0; D, Zeynel Cebeci / CC BY-SA 3.0]
Sea spray, made up of seawater droplets suspended in the air, sprays the vegetation on the seashore and salts the soil where it grows. This vegetation is called “halophilic” which means “salt-loving”. [1] A “halophyte” is any plant that lives in contact with abnormally high concentrations of salt. Examples of halophytes are plants that grow in seashores, deserts, salt marshes, or salt lakes.

In the salt marshes you can find glasswort (Salicornia sp. ), which includes about thirty edible species, and on the dunes the sea spurge (Euphorbia paralias), the sand Couch grass (Elymus farctus) or the magnificent sea daffodil (Pancratium maritimum).

mont saint michel - moutons
Figure 2. Salt meadow sheep farm near Mont-Saint-Michel (Manche, France). [Source: Jean Paulo de Souza Henrique / CC BY-SA 4.0]
At other latitudes in humid tropical and equatorial climates, mangrove vegetation growing roots in brackish water illustrates the salinity tolerance capacities of halophilic grasses or shrubs.

Halophytes can tolerate salt concentrations in the range of 500 mM to 1 M, exacerbating the effectiveness of mechanisms for managing the toxicity of the sodium ion Na+. [2] Some plants, such as glasswort, require this ion to grow, and these are known as strict halophytes.

These ungrateful ecosystems lend themselves to agriculture; for example, salt meadow pastoralism (Figure 2) provides an example of an agricultural practice with sheep raised and fed with halophilic flora adapted to soil salinity, flooding and drought, including Puccinellia (Puccinellia maritima, a grass), troscart (Triglochin maritima) or obione (Halimione portulacoïdes).

1.2. Sensitive plants

plantes de riz - plantes de riz na+
Figure 3. Leaf symptoms caused by Na+ toxicity in rice plants. Salt-sensitive (right) and tolerant (left) cultivar are grown in hydroponic solution supplemented with NaCl. The sensitive cultivar shows significant growth retardation and burnt leaves. This variability in the level of salinity tolerance within the same species is used by research to identify genes and mechanisms that are responsible for tolerance. [Source: © International Rice Research Institute / CC BY-NC-SA 3.0]
While halophytes can grow on saline soils, other plants that are not adapted to these extreme conditions are unable to do so. These are glycophilic or “glycophytic” plants that grow in salt-free environments. Plant species have a wide range of tolerance to salt stress. For example, in the cereal group, rice (Oryza sativa) is the most sensitive (Figure 3), followed by durum wheat (Triticum turgidum ssp. durum), bread wheat (Triticum aestivum); barley (Hordeum vulgare) is the most tolerant [3].

The growth and development of glycophytes are affected in saline soils, due to the presence of excess soluble salts, mainly the sodium cation (Na+). The visual symptoms of salt damage are chlorosis of the leaf tips, followed by leaf scorch, browning and leaf death. This results in reduced plant growth, stunted roots, sterility and reduced seed production.

The spread of soil salinization is a major environmental problem: every year, 10 million hectares of agricultural land are destroyed worldwide by soil salinization. Climate change, excessive use of groundwater, increasing use of poor quality irrigation water, massive irrigation in a semi-arid to arid climate zone and a lack of soil leaching can intensify this phenomenon of soil salinisation (See Focus on Soil Salinization). For several decades, research in plant biology has led to a much better understanding of the mechanisms of toxicity linked to salinity and those that enable plants to adapt to it (See Focus on Plant Biotechnology and Crop Salinity Tolerance).

2. Toxicity of Na+ ion in plant cells

The Na+ ion, in high concentration in the soil, leads to a series of deleterious processes for plant growth and development:

  • On the one hand, a high concentration of salt in the soil solution increases its water potential [4] ; this will disrupt plant water and nutrient nutrition via the roots.
  • On the other hand, the plant cannot prevent the long-term entry of Na+ into its root cells and its translocation to the aerial part, causing widespread cell intoxication.

A two-phase model has been proposed to explain the deleterious mechanisms due to an excess of Na+ ion:

  • early effects related to the increase in external osmotic pressure;
  • later effects related to the accumulation of Na+ in the cells.

2.1. Water, salt and water potential

The presence of salt in the soil affects its water potential. This potential is the energy that must be applied to the soil to release 1g of water. It is always negative, and the lower it is, the stronger the bond between water and soil is. [5] Pure water has a water potential of 0; but in soil, water is not pure and contains solutes, which are responsible for the decrease in water potential. It is therefore defined as follows:

  • by its water content. Thus a well hydrated soil will have a water potential with values of about -0.1 MPa, while a dry soil will have values of about -1 MPa.
  • by the solute concentration of the soil. Thus, this value can reach about -0.4 MPa in a soil contaminated with a 150 mM NaCl salt solution.

To understand the importance of these physico-chemical parameters in salinity problems, the water potential of the root cells must be taken into account. Under normal conditions, root cells have a water potential value of about -0.5 MPa.

Figure 4. In saline soil, the osmotic pressure associated with salt reduces the difference in water potential between the soil and the root. As a consequence, the flow of water into the root is decreased. This reduces the water available to the plant for growth and yield. [Source: EEnv scheme adapted from Rengasamy et al., ref. 7]
The movement of water goes from the highest potential to the lowest potential (in other words from the least negative to the most negative). The difference in water potential between soil and plant cells (0.4 MPa) will allow water to move from the soil (-0.1 MPa) to the root cells (-0.5 MPa) (Figure 4A). [6]

When soil is contaminated with a 150 mM NaCl salt solution, this difference in water potential is reduced to 0.1 MPa (Figure 4B). This difference in water potential is one of the driving forces behind the flow of water through the cell membrane. It can be estimated that, apart from any adaptive cellular response to salinity, this driving force is 4 times less efficient in transferring water from the soil to the root interior under salinity conditions than under normal conditions!

In an extreme situation where the soil salinity would be higher, one could theoretically witness the exit of water from the root cells into the saline soil, and dehydration of the plant by its roots! This phenomenon is reminiscent of hydric stress which can have several causes (drought, frost, …) and occurs when the soil is not able to supply enough liquid water to the roots to ensure tissue hydration and evaporation by the leaves (See The fixed life of plants and its constraints).

Damage due to the osmotic effect of salinity not only impacts the turgidity of the cells, but induces metabolic changes similar to those caused by water stress. For example, osmotic stress has an immediate effect on the growth rate of plants.

2.2. Salinity, photosynthesis and oxidative stress

Figure 5. Staining of tobacco leaves revealing the accumulation of Reactive Oxygen Species or ROS (H2O2). Tobacco plants were grown for 60 days in a medium with or without NaCl (top diagram). The leaves were then transferred to Petri dishes containing 3,3′- diaminobenzidine (DAB). DAB allows visualization of H2O2 accumulation in tissues grown in the presence of NaCl.

In addition to suffering osmotic stress that prevents normal water absorption at the root cell level, the plant must also deal with disorders in its leaf parts:

  • Photosynthesis is altered, due to the stomata closure, a phenomenon controlled by the hormone abscisic acid, and the inhibition of CO2 fixation;
  • The linear transfer of electrons through photosystem II is inhibited, the cyclic transfer of electrons within photosystem I is activated;
  • The non-photochemical quenching protection mechanism set up to evacuate excess light energy in the form of fluorescence is exacerbated [7] (See Focus Z as photosynthesis).

The immediate consequence of these disorders in photosynthesis is the production of Reactive Oxygen Species (ROS, for Reactive Oxygen Species) and the expression of enzymes involved in the management of oxidative stress to prevent damage to photosystems, lipids, proteins and nucleic acids. However, one of the ROS, hydrogen peroxide (H2O2), also has a cell signalling role in salt tolerance. Thus, there is a coordination mechanism between the ROS production, their elimination by enzymes and a sufficient amount required for cell signalling (Figure 5). [8]

2.3. Why is Na+ toxic?

Figure 6. Impact of Na+ on plant cell function under conditions of salt stress. [Source: © EEnv diagram]
The specific toxicity of the Na+ ion could be due to its physicochemical properties that are close to those of K+ (Potassium). In all living organisms, K+ is the main inorganic cation in the cytosol, where its concentration (about 0.1 M) is generally several times higher than that of Na+. It plays an essential role in plant physiology. Due to its intracellular abundance, it is the major inorganic counter-ion to the negative charges of proteins and nucleic acids, with in particular functions to activate more than fifty enzymatic reactions [9] (See Focus Potassium and Sodium: fraternal twins!).

The massive entry of Na+ into the cytosol of plants in a saline environment leads to a series of reactions (Figure 6). [10]

  • Na+ competes with K+ for the absorption of the latter in the root cell, as both ions are transported across the plasma membrane by several identical transport systems (NSCC-type non-selective cation channels and HKT high-affinity transporters). This phenomenon is exacerbated in a saline stress situation.
  • Na+ has deleterious effects on the cell surface as it severely disrupts the electrical polarization of the plasma membrane. This depolarization leads to a dramatic increase in K+ leakage outside the cell, through the K+ channels activated by depolarization (channels called KOR).
  • Na+ would compete with K+ in binding to important proteins, without performing the same functions as the latter. An excess of Na+ in the cytosol would thus inhibit the activity of numerous enzymatic reactions leading to cellular dysfunction, for example on the photosynthetic activity of plants.
  • Recent data indicate that the aquaporins (water channels) of the plasma membrane, known mainly for their activity in transporting water and neutral solutes, also participate in the entry of Na+ into the cell!

Thus, despite the presence of K+ in the soil, one can say that salinity causes a deficiency of this nutrient in the plant!

3. Salinity tolerance mechanisms in plants

3.1. What is salinity stress?

Figure 7. Deleterious effects related to salinity stress toxicity and the cellular response set up to ensure tolerance. In halophilic plants, excess salt in the soil causes ionic, oxidative and osmotic stress, which they must manage by implementing strategies to maintain (A) oxidative stress molecules at an acceptable level, (B) osmotic balance, and (C) ionic homeostasis. [Source: © EEnv diagram]
Plants have developed several biochemical and molecular mechanisms to resist the adverse effects of soil salinity. The components of a saline stress can be grouped into three categories [11]:

  • The oxidative stress encountered during salinity stress must be managed at the cellular level by protective and damage repair mechanisms.
  • The response to osmotic stress makes it possible to maintain water homeostasis through biosynthesis of compatible solutes and the involvement of aquaporins (water channels).
  • These mechanisms involve the function and regulation of Na+ and/or K+ transport systems involved in the response to ionic stress (Figure 7). [12]

3.2. Detoxification strategies against oxidative stress

Oxidative stress, caused by salt stress, in corn seedlings was observed mainly in the mature roots and leaves, and to a lesser extent in the young leaves (Figure 7A). Various detoxification strategies are then put in place :

  • Increase in H2O2 content and markers of oxidative damage to cell membranes (electrolyte leakage and lipid peroxidation).
  • Accumulation in cells of antioxidant molecules (polyphenols, flavonoids, ascorbate, …) and antioxidant enzymatic activities (catalase, superoxide dismutase, peroxidase).

In this way, ROS protection mechanisms can be activated throughout the plant, as is the case in many other stress situations (See How do plants cope with alpine stresses?).

3.3. How can water homeostasis be maintained?

Maintaining water balance in the plant tissues (also called water homeostasis) is crucial for plant growth and development. Water is lost through transpiration through the stomata and acquired through root absorption. Water homeostasis is therefore ensured by the supply of water, but also by the capacity of plant cells to retain water.

Under conditions of osmotic stress, water homeostasis is disturbed (see Figure 4), the plant cell accumulates compatible solutes in the cytosol to balance the osmotic pressure (Figure 7). These are sucrose, proline and glycine betaine. For example, the accumulation of proline has been described as a non-toxic and protective osmolyte in a large number of plants under salt stress.

3.4. Maintaining ionic balance?

Figure 8. Strategies involved in ionic homeostasis implemented in root cells by plants to enable them to tolerate saline stress. [Source: © EEnv diagram]
Analysis of the rice genome has identified genes responsible for salt tolerance in rice [13]. One of them encodes an Na+ transporter involved in homeostasis between K+, an essential element, and Na+, a toxic element. This major discovery highlights the importance of the transport systems of these two ions in the phenomenon of salt tolerance.

For a plant to be able to tolerate salt stress, it is important that the K+/Na+ ratio in root cells cytosol is high and therefore that these cells contain little Na+ (Figure 7C). Different strategies enable plants to achieve this; they involve transport systems that contribute to Na+ and K+ homeostasis (Figure 8).

  1. Extruding excess Na+ ions from the root epidermal cells to the outside. The protein called SOS1 [14] plays a role in this process, it is the only system of localized Na+ efflux at the plasma membrane characterized so far in plants.
  2. Compartmentalizing of Na+ ions into the vacuole, once they are in the cytosol, by the activity of the NHX1 protein [15].
  3. Preventing translocation of Na+ ions to aerial parts. This role is performed by a selective Na+ influx transporter of the HKT1 family. Located in the root xylem parenchyma, it allows the discharge of Na+ from the xylem sap, by retaining this ion in the cells of the xylem parenchyma. The Saltol locus carries the gene encoding this transport system.
  4. Allowing the return of Na+ ions back to the roots. HKT1 is also expressed in cells adjacent to the phloem vessels in leaves; this would allow recirculation of Na+ from the aerial parts, loading the Na+ into the phloem to allow return.
  5. Counteracting the toxic effects of Na+ through the involvement of K+ transport systems. These systems help to maintain a high cytosolic K+/Na+ ratio. For example, in rice, individual mutations in the AKT1, HAK1 and HAK5 genes, encoding, respectively, one and two K+ transporters, cause a higher sensitivity to saline stress in mutated plants. This demonstrates that K+ nutrition plays a major role in soil salinity tolerance (Figure 8).

4. Sodium can be useful to plants!

Atriplex vesicaria
Figure 9. Atriplex vesicaria, a shrub from the arid and saline soils of Australia, needs salt for its growth. [Source: Mark Marathon / CC BY-SA 4.0]
Despite its toxicity in plants, the sodium ion (Na+) is also a nutrient, especially when the potassium ion (K+) is in low concentration in the soil.

K+ concentration in the soil in the millimolar range allows optimal plant growth. The availability of K+ ions in the soil solution, slowly released by soil particles and clays, is often limiting for optimal growth in most natural ecosystems. When the K+ concentration in the soil is very low, of the order of the micromolar, Na+ can substitute it in certain vital functions, such as its role as a solute to maintain osmolarity in the cell (See Focus Potassium and Sodium: fraternal twins!).

About 90% of the K+ is stored in the vacuole where it plays an osmotic role. Confined in the vacuole, Na+ can play the same role; the cell then mobilizes K+ in the cytosol where it performs its metabolic role. A Na+ transport system specifically expressed when the K+ concentration in the soil is low would allow Na+ to be absorbed into the plant for this beneficial use [16]. Na+ can thus stimulate plant growth at low concentrations.

Halophilic plants may need certain concentrations of NaCl to grow properly, as in Atriplex vesicaria (an Australian shrub closely related to the obione Halimione portulacoïdes found in salt meadows in France, Figure 9), Echinochloa utilis (Japanese millet) or Portulaca grandiflora (a purslane).

5. Messages to remember

  • Worldwide, 20% of irrigated land is threatened by progressive soil salinization:
    – plants of agronomic interest have little or no tolerance to soil salinity ;
    – only halophilic vegetation is adapted to grow in saline conditions.
  • The sodium ion (Na+) is the main cause of toxicity due to salt disturbance :
    – water and nutrient uptake by the roots;
    – photosynthesis in the leaves;
    – but also by accumulating activated forms of oxygen leading to oxidative stress.
  • Due to their similar physico-chemical properties, Na+ competes with the potassium (K+) ion, a major nutrient in plants.
  • Plants react to the presence of Na+ in several steps:
    – By protecting themselves against oxidative stress;
    – By accumulating solutes to counteract the osmotic effect of too much Na+ in the soil;
    – By limiting the absorption of Na+ in the root, increasing its expulsion outside the root cells, confining it to the vacuole, and managing its transport and exclusion from the leaves. The plant also improves its K+ nutrition.

Notes and References

Cover image. Rice field in Cat Bà (Vietnam). [Source: © Doan Trung Luu]

[1] Halophilic plants are also referred to as halophilic plants, as opposed to glycophilic or “glycophytic” plants that grow in salt-free environments.

[2] Flowers T.J., Galal H.K., & Bromham L. (2010). Evolution of halophytes: multiple origins of salt tolerance in land plants. Funct. Plant Biol. 37, 604-612. doi: 10.1071/FP09269

[3] Munns R. & Tester M. (2008) Mechanisms of Salinity Tolerance. Ann. Review Plant Biol. 59: 651-681

[4] L’eau, de l’absorption à la transpiration (in French)

[5] It is expressed in pressure units such as Pascal (Pa)

[6] Rengasamy P., North S. & Smith A. (2010) Diagnosis and management of sodicity and salinity in soil and water in the Murray Irrigation region. The University of Adelaide, SA.

[7] Stepien P. & Johnson G.N. (2009) Contrasting Responses of Photosynthesis to Salt Stress in the Glycophyte Arabidopsis and the Halophyte Thellungiella : Role of the Plastid Terminal Oxidase as an Alternative Electron Sink. Plant Physiology 149 (2) 1154-1165; DOI: 10.1104/pp.108.132407

[8] Yadav N.S., Shukla P.S., Jha A. et al. (2012) The SbSOS1 gene from the extreme halophyte Salicornia brachiata enhances Na+ loading in xylem and confers salt tolerance in transgenic tobacco. BMC Plant Biol 12, 188. https://doi. org/10.1186/1471-2229-12-188

[9] Bhandal I.S. & Malik C.P. (1988) Potassium estimation, uptake, and its role in the physiology and metabolism of flowering plants. Int. Rev. Cytol. 110: 205-254

[10] The general outlines of this article are original, but inspired by many pedagogical schemes. The most emblematic of them is “Teaching tools in Plant Biology (2014) Plant Nutrition 1: Membrane transport and Energetics, Potassium nutrition, and Sodium toxicity. DOI: https://doi.org/10.1105/tpc.114.tt0914.”

[11] Munns R. & Tester M. (2008) Mechanisms of Salinity Tolerance. Annu. Rev. Plant Biol. 59, 651-681.

[12] Plant Nutrition 1: Membrane Transport and Energetics, Potassium Nutrition, and Sodium Toxicity

[13] This gene is called Saltol (for Salt Tolerance). It encodes a selective Na+ influx transporter of the HKT1 family. The rice genome was fully sequenced in 2005. Its repertoire of some 37,500 genes is now available. Any visible and measurable agronomic trait (the phenotype), such as tolerance to drought, salinity or plant height, can be associated with a set of genes (the genotype).

[14] SOS1 for Salt Overly Sensitive ; this is a Na+/H+ antiport. An antiport is a membrane protein involved in the active transport of different ions across a membrane, such as the plasma membrane, in opposite directions Na+ in one direction and H+ in the other.

[15] This is a Na+/H+ antiport of the NHX1 type.

[16] Horie T., Costa A., Kim T. H., Han M.J., Horie R., Leung H.-Y., Miyao A., Hirochika H., An G. & Schroeder J.I., (2007) Rice OsHKT2;1 transport mediates large Na+ influx component into K+-starved roots for growth. EMBO J. 26, 3003-3014.


环境百科全书由环境和能源百科全书协会出版 (www.a3e.fr),该协会与格勒诺布尔阿尔卑斯大学和格勒诺布尔INP有合同关系,并由法国科学院赞助。

引用这篇文章: LUU Doan Trung (2021年3月9日), How do plants tolerate a salty diet?, 环境百科全书,咨询于 2024年12月21日 [在线ISSN 2555-0950]网址: https://www.encyclopedie-environnement.org/en/life/how-plants-tolerate-salty-diet/.

环境百科全书中的文章是根据知识共享BY-NC-SA许可条款提供的,该许可授权复制的条件是:引用来源,不作商业使用,共享相同的初始条件,并且在每次重复使用或分发时复制知识共享BY-NC-SA许可声明。