极端环境微生物

Encyclopédie environnement - extrêmophiles - couverture

  地球上鲜有不毛之地。冰川沙漠、温泉、海底、高盐环境、地幔的岩石……即使在这些恶劣的环境下,一些微生物依然能够构成丰富的生物多样性。这些生物被称为极端环境微生物(extremophilic microbes),对它们的研究揭示了不同于细菌和真核生物的第三种生命形式——古菌(Archaea)。这类有机体大量存在于环境中,与我们的细胞存在进化上的关联,其表现出的独特模式有助于理解复杂细胞过程的起源与运作。在任何其他生命形式都无法存活的温度、压力或盐度条件下,极端微生物采取不同策略,来维持自身细胞结构的完整性。对它们的研究揭示了生物在“艰苦的”生态系统中开疆扩土的能力。目前,人类正在利用这类微生物酶的特殊属性,开发清洁可持续的工业流程。

1. 极端微生物的生物多样性

  土壤与海洋微生物支配着我们的星球[1]。它们在调节主要的地球化学循环方面扮演着重要角色,并有望为未来技术提供大量新型生物催化剂。但由于当前的微生物学仍过度局限于人类健康问题,我们对这类微生物多样性的了解仍然非常片面。只有不到1%的环境微生物能在实验室中进行纯培养。过去十年间,新工具(如可以直接分析微生物群落DNA的宏基因组学)的发展改变了我们对微生物生态系统的看法。【生态系统:一系列相关联的生物(又称生物群落)及其所处环境(又称群落生境)构成的统一整体,涉及生物、地理、土壤、水文、气候等多个层面。生态系统的特征包括物种与物种间、物种与周围环境间的相互作用,生态系统各组分间赖以维持生命的物质和能量流动,以及久而久之建立起的稳态与进化间的动态平衡。】[2]得益于上述新技术,我们发现,许多长久以来因其极端的物理化学条件而被认为不适宜生物存活的环境实际上具有丰富的微生物生命形式[3]

环境百科全书-极端环境微生物-不同极端环境摄影图
图1. 不同极端环境的摄影图片。右上:水下3000米深处的大西洋脊洛加切夫(Logatchev)热液区。左上:亚速尔群岛的火山热液泉。左下:南极冰雪环境。右下:安第斯山脉的高盐湖泊。
[照片来源:© Ifremer,法国海洋开发研究所]

  例如,火山热液泉就有着惊人的生物多样性,可谓深渊尽头的生命绿洲(图1)(详见焦点:《黑烟下的生态系统》);大型盐湖或死海等高盐环境也是某些微生物的栖息地,这些微生物只有在其他任何生命形式都无法承受的超高盐度中才能生长;冰川和极地环境同样孕育有大量微生物;此外,在海底、沉积物和深部地层中也存在着极丰富的微生物群落。据估计,80%的陆地生态系统常年暴露在5℃以下的低温中,且经常处于高压条件下。因此,放眼全球,极端微生物的存在不应再被视为个例。

  人们对极端微生物在生态系统中的作用(包括气候调节)知之甚少。最近的研究表明,它们在温室气体的产生,以及主要的碳、氮和硝酸盐循环方面都发挥着不容忽视的作用。通常来说,在这类微生物的基因组中,90%以上的基因所编码的蛋白质都有着不为人知的功能。之所以会出现这种情况,是因为生物大分子必须适应上述极端环境特有的物理-化学环境、营养和能源。这些环境限制可能催生新的代谢途径,其使用的底物和辅助因子与“常规”生物体所使用的不同。

2. 古菌的发现:革命性事件

环境百科全书-极端环境微生物-生物进化树的三域组成
图2. 生命系统发生树的三域组成:细菌、古菌和真核生物
BACTERIA细菌,cyanobacteria蓝细菌,heterotrophic bacteria异养细菌,EUKARYOTA真核生物,fungi真菌,animals动物,plants植物,chromists茸鞭生物,alveolates囊泡虫,rhodophytes红藻,flagellates鞭毛虫,basal protists基础原生生物,ARCHAEA古菌,halophiles嗜盐菌,thermophiles嗜热菌

  许多极端环境有机物都是古菌。作为独立于细菌和真核生物之外的第三种生命形式(图2),这类微生物有着明显不同于二者的分子特征。1990年,美国生物学家卡尔·乌斯(Karl Woese)首次提出了“古菌”这一定义。乌斯尝试以核糖体RNA为分子示踪剂,重建整体的生命进化树。自那之后,越来越多的新型古菌便不断被发现,对其基因组的研究也证实,它们的确属于一种未知的全新生命形式[4]。同细菌一样,古菌也是没有细胞核的单细胞生物(图3),但它们却有着独树一帜的鲜明特征。这些微生物不仅有自身专属的病毒,更令人惊讶的是,有些古菌还能够与海绵等复杂有机体形成共生关系。【共生:两个分属不同物种的有机体之间建立的亲密、持久、互利的联系。参与共生的有机体称为共生体,其中,较大的共生体也可称为宿主。】古菌在肠道菌群中也有发现,它们对人类健康非常重要(详见《人类微生物:健康的盟友》)。目前,在古菌中尚未发现病原体,但其已被证实与特定疾病或代谢紊乱(如肥胖等)有关。古菌有着同细菌一样复杂的进化与扩张过程,且与真核生物的进化关系惊人的接近。有些假说认为,古菌在进化树上位于真核生物起源处[5](详见《共生与进化》)。

环境百科全书-极端环境微生物-热液底极端嗜热菌电镜图
图3. 一种深海超嗜热古菌——弗米克兰热球菌(Thermococcus fumicolans)的电镜照片。
[显微照片来源:© Ifremer]

  古菌似乎格外适合在地球上已知最极端的环境中生长。因此,人们最初认为它们多样性极低,只存在于火山热液和高盐湖泊处。这一早期论断完全有失偏颇。分子生态学研究表明,所有地球环境中都存在大量古菌系。事实上,我们正在发现越来越多的“非极端环境”古菌,或将占海洋和土壤微生物总量的25%[3]。因此,古菌不应再被视作一种边缘、古老或原始的生命形式。

环境百科全书-极端环境微生物-人类蛋白酶体的分子结构
图4. 人源蛋白酶体(绿色)的分子结构。该蛋白酶体是一种与癌症有关的细胞器。其在古菌中对应的结构以红色表示。

  古菌界的这一发现成果意义重大,但其重要性仍远未得到充分认识。这一发现改变了我们将所有生物划分为原核和真核生物两类的观点。对古菌进化过程的研究开拓了解释“细胞生命如何产生”这一问题的新思路[6]。尽管古菌是没有细胞核的单细胞生物,但它们与包括人类细胞在内的真核细胞有许多相同的生命过程[7]。越来越多的证据表明,古菌适合成为分子生物学的模式生物。事实上,一直以来,研究人类细胞中的大型细胞器都非常困难。在实验室条件下,很难控制细胞器的纯化及其活动。所幸,在古菌中发现的同源系统提供了上述细胞器的简易版,不仅比原版稳定得多,而且更加易得。此外,极端生长环境赋予古菌的特性也使其能够更好地被激活或抑制。这些优势加上近年来基因工具的发展,使得古菌成为研究整合生物学(融合在体研究、生物化学研究、生物物理学研究和结构生物学研究的综合性学科)的极佳模式生物。这些研究首次确定了许多细胞器的结构,为包括抗肿瘤药物在内的多种药物研发提供了来源(图4)。

3. 极端环境微生物与生命的极限

  生物体的生长发育需要:

  • 碳源,构成生物大分子的基本元素;
  • 水,蛋白质行使功能最常用的溶剂;
  • 能量,生物系统行使功能的必要条件。

  能量由光、电子供体元素(如金属)、酶催化下的化学键断裂等途径提供。在一直被认为是不毛之地的环境中发现了微生物群落,这一事实表明,生物生存的物理化学极限远比人们从前认为的要大得多。这些统称为极端微生物的有机体并没有处于“挣扎求生”的状态,而是真的需要那些在人类看来极度艰苦的环境,也只能生长于这些环境[8]

  在热液泉(详见焦点:《黑烟下的生态系统》)中,存在名为“嗜热(thermophilic)菌”或“超级嗜热(hyperthermophilic)菌”的古菌和细菌,它们只有在高温下才能达到最好的生长状态,有时环境温度甚至需要超过110℃。海底(如马里亚纳海沟)独有的某些嗜压菌(piezophiles)则需要在20MPa以上的压力环境中才能生存[9]。在海底、湖泊和冰川环境中,“嗜冷微生物”(psychophiles)只能活跃于15℃以下,甚至低至-12℃的环境中[10]。在高盐环境中,自由水大多结合盐离子,因而十分稀少。这样的环境会破坏细胞,导致蛋白质变性。然而,被称为“嗜盐”(halophilic)有机体的生物具有独特的生物化学特性,可以在严重脱水状态下保持细胞的完整性[11]。热液泉、地层流体或高盐环境通常呈现出极端的pH值(0和13)。因此,绝大多数在此生存的有机体具有多种嗜性。

  除了极端且经常大幅波动的物理-化学环境,极端微生物还面临多种环境压力,如辐射或重金属。这些因素能够产生自由基,破坏DNA和蛋白质。绝大多数极端微生物都发育出了DNA修复系统和蛋白质循环系统,帮助自身抵抗高达10000格雷的辐射。极端微生物研究的另一个前沿领域在于,极端环境微生物似乎特别适应极低能量和(或)营养流动导致的生存压力,部分极端微生物甚至可以在海底沉积的泥沙深处或地下数千公里的地幔内部缓慢地存活和生长[13]。因此,对极端微生物的研究还可以促进环境能源的开发。

环境百科全书-极端环境微生物-木卫三内部结构示意图
图5. 木卫三(Ganymede)内部结构示意图。据美国国家航空航天局报道,在冰层下100公里处存在盐海。
[图源:Felicia Chou,美国国家航空航天局]
Ganymede Interior木卫三内部,Ice crust冰地壳,Saline ocean盐海,Ice mantle冰地幔,Rocky mantle岩石地幔,Iron core铁地核

  对古菌,或更广义范畴上的极端微生物的研究和发现,改变了我们对地球宜居性的观念。这些生物的存在为我们在其他星球上寻找可能的生命痕迹指明了方向[13]。例如,在智利的阿塔卡马沙漠,人们发现了能存活于干旱和寒冷环境中的微生物。嗜盐有机体可以在-15℃的环境中生长。此外,在发现火星上的液态盐池、土卫和木卫(如木卫二和木卫三)上的深海和热液活动后(图5),与高压环境密切相关的微生物也是值得进一步思考的有趣观察。

4. 极端微生物如何维持生物功能?

  维持生物膜的稳定和正常功能,是细胞在极端温度、压力或盐度条件下生存的首要条件。膜结构对产生能量和分隔生化反应至关重要。膜脂质组分的变化能够帮助其适应影响膜流动性的高(低)温和高压。

  对非极端环境有机体而言,暴露于“极端”物理-化学环境会使某些蛋白质失活甚至变性。生物体对极端环境的适应性还表现为维持细胞器的合成,以及维持组成蛋白质的多肽链的三维折叠,这种折叠能够赋予酶生化活性。理解极端环境下生物大分子的稳定机制,有助于理解诸多内容,包括但不限于以下三点:

(i)生物的起源和扩张能力;

(ii)调控蛋白质行使功能的基本过程;

(iii)维持细胞器完整性的广谱细胞机制[8]

  在维持细胞组分方面,极端微生物广泛使用的首要策略是在细胞质中合成并积累海藻糖、甜菜碱等小分子,从而稳定分子结构。维持蛋白质完整性和稳态还需要优化分子伴侣和蛋白质修饰系统,以防止蛋白质聚集,协助多肽链折叠,或者激活细胞内的蛋白酶,促使其启动快速降解过程。蛋白质的这些“质量控制”系统对于嗜热和嗜冷微生物的适应力都至关重要。这类系统并非极端微生物所特有,而是存留在包括人类在内的所有生命体当中。因此,极端环境微生物系统可作为一种简化模型,帮助理解应激反应、退行性疾病和衰老过程等基本机制。

  维持生物大分子完整性的细胞机制需要细胞提供大量能量,这是因为真正的极端微生物蛋白质都是高度修饰的。这些修饰在进化中经突变获得,有助于生物体在高温、高盐或高压条件下维持自身蛋白质的稳定性。然而,对比极端环境有机体与相应的常温环境有机体的蛋白质晶体结构发现,二者的整体结构几乎没有差别。另一方面,选择性突变产生了极大的生物物理特性差异。例如,嗜热蛋白质在室温下即被“冻结”,其原因在于,分子内相互作用的优化增强了大分子的结构,从而赋予了蛋白质非凡的稳定性。然而,尽管维持三维结构对生物大分子正常行使功能至关重要,但是蛋白质还需有整体的动态性。有些区域必须通过移动来识别底物和辅因子,执行复杂的生物化学功能。

环境百科全书-极端环境微生物-来自超级嗜热古菌的酶晶体结构
图6. 超级嗜热古菌的酶晶体结构图:黄-橙色区域对应酶执行功能所必需的动态区。蓝色区域表示稳定分子体系所需的刚性区域。
[来源:Coquelle等,2010,详见参考资料及说明[14]](Loop环,Deviation偏离角,Mobile surface loop可动表面环,Connecting region between αJ and α1GαJ和α1G间的连接区))

  多亏了与分子进化相关的结构比较分析及模拟工作,蛋白质结构内的关键区域现已确定(图6)[14]。在进化过程中,这些区域的氨基酸被取代。整体稳定性和局部动态性之间的最佳平衡使得蛋白质能够在极端环境中维持其功能。分子折叠的类型多样,因此蛋白质结构适应环境限制的策略也各不相同。除了有助于理解极端微生物,这一工作也增进了人们对生物大分子生成以及酶的作用机制的理解。当面向具有临床价值的蛋白质时,上述研究可用于药物开发。

  不同环境条件对分子结构的限制不同,相应的适应性策略也不同。因此,对于嗜热菌来说,主要的挑战在于蛋白质在高温下难以折叠,在这种情况下,适应性策略表现为强化相关的力,帮助蛋白质稳定折叠,同时在酶行使生化功能的区域维持一定的灵活性。低温的主要影响在于减慢化学反应速率。在嗜冷菌的蛋白质中,适应性策略表现为修饰活性位点,继而提高催化效率,该策略关乎分子内部整体或局部限制的放松[10]。这些修饰将代谢维持在较低但足以进行细胞分裂的水平。盐既能减少自由水的数量,又能与多肽链相互作用,这些效应将影响蛋白质的溶解度,破坏蛋白质折叠所需的分子内界面。然而,嗜盐菌在进化中积累了许多有利突变,这些突变能够产生帮助抵消这些效应的蛋白质,甚至化盐离子的危害为优势[15]。多种突变叠加,有助于稳定结构,同时维持系统正常运作所必需的水化层。上述适应性策略非常先进,以至于这些有机体的绝大多数蛋白质已经发展到只在高盐环境下溶解和折叠[16]。最后,近期研究表明,针对海底和地球地质层深处的高静水压力,极端微生物也进化出了相应的适应性策略[9]。在这种情况下,修饰的主要对象为存在于分子结构中的空洞。

  在与“极端”环境生命相关的各种适应性策略中,蛋白质结构的变化深刻地改变了生物系统的生化和生理过程。因此,我们眼中的“正常”环境:温度37℃、盐浓度3%、大气压、有氧等,对绝大多数极端微生物而言其实是很严峻的,会对细胞造成压力。例如,水是嗜盐菌的致命溶剂[17]。因为这类有机体为了保证其蛋白质的溶解性与正确折叠,在细胞质中积累了大量的盐类,浓度接近饱和。在地质尺度上,地球表面不同区域的气候大相径庭,形成的“极端环境”也差别巨大。也正因如此,“极端微生物”实际上是一个相对的概念。

5. “极端酶”在生物技术中的作用

环境百科全书-极端环境微生物-沉积物中的嗜甲烷古菌群和硫酸盐还原细菌图
图7. 沉积物中的嗜甲烷古菌群和硫酸盐还原菌图
[图源:© Ifremer]

  酶作为一种天然产物,能够高效、无污染地进行化学反应。在粮食和环境危机的大背景下,人类需要发展仿生经济,正因如此,在各类极端环境微生物群体基因组中发现的新酶,或称极端酶(extremozymes)引起了广泛的研究兴趣[18]。的确,这些酶效果强劲,能够在极端条件下发挥作用,有时还可以催化独特的化学反应,这些有趣的特质赋予了它们多种多样的应用,例如,在生物科技领域,利用极端酶生产生物燃料、生物材料或药物分子。嗜盐微生物的酶能在高盐环境、有机溶剂和较广的pH条件下发挥作用,可用于食品加工、造纸业和纺织业。

  来自嗜热和(或)嗜压有机体的嗜热酶和嗜压酶极其稳定,可用于在无菌条件下加工食品。它们能够适应多种物理-化学条件,也可用于纺织、皮革、化妆品或制药等多种工业流程。由于其性质独特、数量众多,涉及大量相互作用和共生关系,因而能够在极端环境中调控细菌和古菌群落的动态性,这类微生物几乎相当于一座未经开发的基因资源宝库(图7)。因此,基于极端环境微生物多样性的新型生物催化剂和抗生素研究已成为一个迅速发展的学科,亟待开发专用的酶学和结构学筛选和鉴定平台。

 


参考资料及说明

封面照片: [来源:© Bruno Franzetti]

[1] Abdoun E. (2014) Science & Vie 1161, 70-77

[2] Banik J.J. & Brady S.F. (2010) Current opinion in microbiology 13, 603-609

[3] Cowan D.A., Ramond J.B., Makhalanyane T.P. & De Maayer P. (2015) Curr Opin Microbiol 25, 97-102

[4] Gribaldo S., Forterre P. & Brochier-Armanet C. (2011) Research in microbiology 162, 1-4

[5] Forterre P. (2015) Frontiers in microbiology 6, 717

[6] Gribaldo S, Forterre P, Brochier-Armanet C. (2008) Les ARCHAEA : Evolution et diversité du troisième domaine du vivant, Bull. Soc. Fr. Microbiol. 23(3):137-145

[7] Brochier-Armanet C., Forterre P. & Gribaldo S. (2011) Curr Opin Microbiol 14, 274-281

[8] Oger P. & Franzetti B. (2012) Biofutur 336, 36-39

[9] Jebbar M., Franzetti B., Girard E. & Oger P. (2015) Extremophiles 19, 721-740

[10] Cavicchioli R., Siddiqui K.S., Andrews D. & Sowers K.R. (2002) Current Opin Biotech 13, 253-261

[11] Oren A. (2015) Current Opin Biotech 33, 119-124

[12] Inagaki F. et al (2015) Science 349, 420-424

[13] McKay C.P. (2014) Proc Natl Acad Sci USA 111, 12628-12633

[14] Coquelle N., Fioravanti E., Weik M., Vellieux F., & Madern D. (2007) J Mol Biol 374, 547-562

[15] Madern D., Ebel C. & Zaccai G. (2000) Extremophiles 4, 91-98

[16] Vauclare P., Marty V., Fabiani E., Martinez N., Jasnin M., Gabel F., Peters J., Zaccai G. & Franzetti B. (2015) Extremophiles 19, 1099-1107

[17] Franzetti B. (2010) Biofutur, 35-38

[18] Raddadi N., Cherif A., Daffonchio D., Neifar M. & Fava F. (2015) Applied microbiology and biotechnology 99, 7907-7913


环境百科全书由环境和能源百科全书协会出版 (www.a3e.fr),该协会与格勒诺布尔阿尔卑斯大学和格勒诺布尔INP有合同关系,并由法国科学院赞助。

引用这篇文章: FRANZETTI Bruno (2024年3月14日), 极端环境微生物, 环境百科全书,咨询于 2024年12月21日 [在线ISSN 2555-0950]网址: https://www.encyclopedie-environnement.org/zh/vivant-zh/microbes-in-extreme-environments/.

环境百科全书中的文章是根据知识共享BY-NC-SA许可条款提供的,该许可授权复制的条件是:引用来源,不作商业使用,共享相同的初始条件,并且在每次重复使用或分发时复制知识共享BY-NC-SA许可声明。

Microbes in extreme environments

Encyclopédie environnement - extrêmophiles - couverture

There are few sterile places on the planet. Glacial deserts, hot springs, ocean bottoms, hypersaline environments, rocks of the earth’s mantle… even these hostile environments shelter a rich biodiversity of so-called extremophilic microbes. Their study revealed a third life form different from bacteria and eukaryotes. These organisms, called Archaea, are abundant in the environment. They have evolutionary links with our cells, representing unique models for understanding the origin and functioning of complex cellular processes. Different strategies are used by extremophiles to maintain the integrity of their cellular machinery at conditions of temperature, pressure or salinity that are lethal to any other form of life. Their study reveals the capacity of living organisms to colonize “hostile” ecosystems. The particular properties of their enzymes are currently being exploited to develop clean and sustainable industrial processes.

1. Biodiversity of extremophilic microbes

Microorganisms in the soil and oceans dominate our planet [1]. They play important roles in the regulation of major geochemical cycles and potentially constitute a reservoir of new biocatalysts for future technologies. Our knowledge of this biodiversity is still very partial, as microbiology is still too limited to human health issues. Less than 1% of environmental microorganisms can be cultured in the laboratory. In the last decade, the development of new tools (like metagenomics, that make it possible to directly analyze DNA from microbial communities) has changed our vision of microbial ecosystemsEssembles formed by an association of living beings (or biocenosis) and its environment (biotope): biological, geological, edaphic (soil), hydrological, climate, etc. An ecosystem is characterized by interactions between living species and their surrounding environment, material and energy flows between each of the ecosystem components that allow their life and a dynamic balance over time between sustainability and evolution. [2]. Thanks to them, we have discovered environments that have long been considered incompatible with life. Despite their extreme physical and chemical conditions, they contain abundant forms of microbial life [3].

Encyclopedie environnement - extremophiles -environnements extremes
Figure 1. Photography of different extreme environments. Top right: hydrothermal site “Logatchev” at 3000 m depth on the Atlantic Ridge. Top left: Volcanic hydrothermal spring in the Azores. Bottom left: Antarctic ice environment. Bottom right. Hypersaline lake in the Andes. [Photos © Ifremer]
Thus, volcanic hydrothermal springs possess an astonishing diversity of organisms at the base of oasis of life in the abyss (Figure 1) (see focus Black smokers’ ecosystems). Hypersaline environments such as large salt lakes or the Dead Sea are also populated by microorganisms that only develop when the salt concentration becomes intolerable for any other form of life. Glacial and polar environments also support rich populations of microbes. Finally, there are significant microbial communities on the ocean floor, in sediments and deep geological layers. It is estimated that 80% of terrestrial ecosystems are permanently exposed to temperatures below 5°C, often under high pressure conditions. Thus, on a global scale, extremophiles can no longer be considered as exceptions.

Little is known about the roles of extremophiles in ecosystems, including climate regulation. Recent work shows that their contribution to the production of greenhouse gases, and to the major carbon, nitrogen and nitrate cycles, is far from negligible. Often, their genome contains more than 90% of genes encoding proteins with unknown functions. For what reasons? Biological macromolecules must necessarily adapt to the physico-chemical conditions, nutritional and energy resources specific to these extreme environments. These constraints may lead to the emergence of new metabolic pathways using different substrates and co-factors than those used by “conventional” organisms.

2. The discovery of the Archaea: a revolution

Encyclopedie environnement - extremophiles - Arbre phylogenetique du vivant
Figure 2. Phylogenetic tree of living organisms composed of three domains: bacteria, archaea and eukaryotes.

Many extremophilic organisms are archaea, a group of microbes that have molecular characteristics that clearly distinguish them from the other two forms of life well known to the public: bacteria and eukaryotes (Figure 2). This third life form was first proposed by the American biologist Karl Woese in 1990. Using ribosome RNA as a molecular tracer, Woese sought to reconstruct the universal tree of the evolution of life. Since then, the identification of a growing number of new archaea species and the study of their genomes has shown that this is indeed a reality [4]. As single-cell organisms without nuclei, such as bacteria (Figure 3), archaea have remarkable properties. They have their own viruses. Even more surprisingly, some archaea are capable of symbiosesIntimate, lasting associations between two organisms belonging to different species that result in beneficial effects for both. The organisms involved are referred to as symbionts, or symbionts (anglicism); the largest can be named host. with complex organisms such as sponges. Archaea are found in the gut microbiota, which plays an important role in human health (see Human microbiotes: allies for our health). No pathogens have yet been identified in archaea, but their link to certain diseases or metabolic disorders such as obesity has been proven. The evolution and expansion of archaea and bacteria are equally complex. Archaea have an astonishing evolutionary proximity to eukaryotes. Some hypotheses suggest that archaea are at the origin of the emergence of eukaryotes [5] (see Symbiosis & evolution).

Encyclopedie environnement - extremophiles - archee hyperthermophile abyssale
Figure 3. Electron microscopic image of an abyssal hyperthermophilic archaea: Thermococcus fumicolans [Microphotography © Ifremer].
Archaea seem particularly suitable for development under the most extreme conditions known on Earth. For this reason, they were initially considered to be poorly diversified and only associated with volcanic hot springs and hypersaline lakes. This initial vision was totally biased. Molecular ecology studies have revealed very many archaean lines in all terrestrial environments. Indeed, we are discovering more and more “non-extremophilic” archaea that would represent 25% of microbial life in oceans and soils [3]. They should therefore no longer be considered as marginal, archaic or primitive forms of life.

Encyclopedie environnement - extremophiles - Structure moleculaire du proteasome humain
Figure 4. Molecular structure of the human proteasome (in green), a cellular machine involved in cancer. Its Archean counterpart is represented in red.

The consequences of the discovery of the archaean world are important and still poorly appreciated. This discovery changes our vision of living organisms, which was divided between prokaryotes and eukaryotes. The study of the evolution of archaea generates new scenarios to explain the appearance of cellular life [6]. Although they are single-celled organisms without nuclei, they share many processes with eukaryotic cells, including human cells [7]. Increasingly, archaea are proving to be model organisms in molecular biology. Indeed, it is always difficult to study the large cellular machines present in human cells. Their purification and activities are difficult to control in the laboratory. The homologous systems found in archaea represent simplified versions that are much more stable and easy to produce. In addition, their extremophile character allows them to be better activated or inhibited. For these reasons, and thanks to the recent development of genetic tools, archaea represent excellent models for integrative biology combining in vivo studies, biochemistry, biophysics and structural biology. These studies were the first to determine the structure of many cellular machinery and are the source of many drugs such as anti-cancer drugs (Figure 4).

3. Extremophilic organisms and the limits of life

To develop, life needs:

  • carbon, the basic element of biological macromolecules;
  • water, the most conducive solvent for the functioning of proteins;
  • energy, necessary for the functioning of biological systems.

Energy is provided by light, by electron-donating elements such as metals and finally by the breaking of chemical bonds catalyzed by enzymes. The discovery of microbial communities in environments long considered sterile has shown that the physico-chemical limits within which life can develop are much more extensive than previously thought. These organisms, which are grouped under the name of extremophiles, are not in “survival” conditions but really need conditions considered hostile in order to develop [8].

In hydrothermal springs (see focus Black smokers’ ecosystems), archaea and bacteria called “thermophilic” or “hyperthermophilic” only develop optimally at high temperatures, sometimes above 110°C. Some, isolated in the abyss such as the Marianas pit, are piezophiles: they need pressures exceeding 20 MPa [9]. In the seabed, lakes and glacial environments, “psychophiles” only thrive below 15°C and down to -12°C [10]. In hypersaline environments, open water is rare because it is largely trapped by saline ions. The result: cells are destroyed and proteins are denatured. Nevertheless, so-called “halophilic” organisms have a particular biochemistry that preserves their cellular integrity under conditions of severe dehydration [11]. Ecosystems associated with hydrothermal springs, geological effluents or hyper-saline environments often have extreme pH conditions (0 and 13). Thus, most of the organisms that live there are poly-extremophiles.

In addition to extreme and often highly fluctuating physico-chemical conditions, extremophiles are also confronted with multiple environmental stresses such as radiation or heavy metals. These agents generate free radicals that damage DNA and proteins. Most extremophilic microbes have developed DNA repair systems and protein recycling systems that enable them to resist radiation doses of up to 10,000 Gray. The exploitation of the environment’s energy resources is another frontier of life that the study of extreme microbes leads us to constantly push back. Thus, extremophiles seem particularly adapted to stresses resulting from very low energy and/or nutrient flows. Thus, some live and develop very slowly in the deep sediments of the oceans or several kilometres inside the Earth’s mantle [12].

Figure 5. Representation of the interior of Ganymede. According to NASA, there is a salty ocean 100 km deep under a layer of ice [Source: Felicia Chou, NASA].
The discovery and study of archaea, more globally of extremophilic microbes, has changed our conceptions on the habitability of the Earth. They guide our ideas in the search for possible traces of life on other planets [13]. For example, microbes capable of surviving arid and cold conditions have been discovered in the Atacama Desert in Chile. Halophilic organisms are capable of developing at -15°C. Other microbes are strictly associated with high pressures, which are interesting observations to consider after the discovery of liquid brines on Mars, deep oceans and hydrothermal activities on moons of Saturn and Jupiter such as Europe and Ganymede (Figure 5).

4. How do extremophiles preserve their biological functions?

The maintenance of stable and functional biological membranes is a first condition for allowing cellular life in extreme conditions of temperature, pressure or salinity. Membranes are essential to produce energy and compartmentalize biochemical activities. Changes in the composition of membrane lipids allow them to adapt to high and low temperatures and very high pressures that affect the fluidity of membranes.

In non-extremophilic organisms, exposure to “extreme” physico-chemical conditions inactive or even denatures certain proteins. Extremophilic adaptation also consists in preserving the assembly of cellular machines and the three-dimensional folding of the polypeptide chains that constitute proteins. This folding is responsible for the biochemical activity of enzymes. Understanding the mechanisms that stabilize biological macromolecules under extreme conditions is not only useful for understanding:
(i) the origins and expansion capacities of living organisms,
(ii) the fundamental processes that govern the functioning of proteins and
(iii) the universal cellular processes designed to maintain the integrity of cellular machinery [8].

A first strategy widely used by extremophiles to preserve their cellular constituents is to synthesize and accumulate small molecules (trehalose, betaines, etc.) in the cytoplasm that stabilize molecular structures. Maintaining protein integrity and homeostasis also involves optimizing chaperone and protein modification systems to prevent aggregation, assist folding or trigger rapid destruction by intracellular proteases. These protein “quality control” systems are crucial both for the adaptation of thermophilic organisms and for psychophiles. They are not specific to extremophiles but are preserved in all living beings, including humans. Thus, systems derived from extremophilic microorganisms are simple models for understanding the fundamental mechanisms of stress response, degenerative diseases and aging processes.

The cellular mechanisms that preserve the integrity of biological macromolecules require a lot of energy from the cells. This is why the proteins of true extremophiles have highly modified properties. Acquired during evolution via mutations, these modifications stabilize proteins under conditions of high temperature, salt or pressure. However, the comparison of crystallographic structures of proteins from extremophilic organisms with their mesophilic counterparts shows little difference in the overall architecture of the structures. On the other hand, the selected mutations generate very different biophysical properties. For example, thermophilic proteins are “frozen” at room temperature. The cause: a stiffening of the macromolecular structure due to the optimization of intramolecular interactions. This gives proteins extraordinary strength. However, while maintaining the three-dimensional structure is essential for the functioning of biological macromolecules, proteins also have overall dynamic properties. Some regions must move to recognize substrates, co-factors and perform complex biochemical functions.

Encyclopedie environnement - extremophiles - enzyme issue d'une archee hyperthermophile
Figure 6. Crystallographic structure of an enzyme from a hyperthermophilic archaea: the yellow-orange colored regions correspond to the flexible parts necessary for the enzyme to function. The blue regions represent the rigid regions necessary for molecular edifice stability Source: Coquelle et al, 2010, ref. [14].
The comparative analysis of structures associated with molecular evolution and simulation work has identified key regions within the protein structure (Figure 6) [14]. During evolution, amino acids have been substituted in these regions. The optimal compromise between stabilization forces and local dynamics allows the protein to maintain its function in extreme conditions. There are multiple types of molecular folding, so the strategies used to adapt protein structures to environmental constraints differ. Beyond the understanding of extremophilia, this work provides a better understanding of how macromolecular structures and enzymes work. When carried out on proteins of medical interest, such studies can be used to develop drugs.

The constraints on molecular structures by different environmental parameters are not the same, resulting in different adaptive strategies. Thus, for thermophiles, the main challenge is to prevent protein folding. Adaptation consists in strengthening the forces that stabilize protein folding while maintaining significant flexibility in regions dedicated to the biochemical functioning of enzymes. The main consequence of low temperatures is to slow down the speed of chemical reactions. In psychrophilic proteins, adaptation is rather due to a modification of the active sites allowing a better catalytic efficiency, associated with a global or local relaxation of intramolecular constraints within them [10]. These modifications maintain a slow but sufficient metabolism to allow cell division. By reducing the amount of free water and interacting with polypeptide chains, salt affects protein solubility and disrupts the intramolecular interfaces that cause folding. However, halophilic proteins have accumulated mutations that allow them to counteract these effects and even interact advantageously with solvent ions [15]. These associations both contribute to stabilizing the structure while maintaining a layer of hydration necessary for the system to operate. Adaptation is so advanced here that most of the proteins from these organisms are only soluble and folded under hypersaline conditions [16]. Finally, recent research reveals molecular adaptation associated with high hydrostatic pressure conditions in the abysses and deep geological layers of the planet [9]. In this case, the cavities present within molecular structures that are mostly modified.

In all types of adaptations associated with life in “extreme” conditions, changes in protein structures profoundly alter the biochemistry and physiology of biological systems. For this reason, conditions that we consider “normal”: temperatures of 37°C, salinity of 3%, atmospheric pressure, presence of oxygen, etc. are in fact hostile conditions for most extremophiles. These conditions cause stress to the cells. For example, water is a deadly solvent for halophiles [17]. These organisms accumulate almost saturated concentrations of salt in their cytoplasm, ensuring the solubility and correct folding of their proteins. On a geological scale, climatic variations of great amplitude have established extreme conditions on the surface of the planet. It is also for this reason that the notion of extremophilia must be put into perspective.

5. Usefulness of “extremozymes” for biotechnologies

Enzymes are natural products that perform chemical reactions in an ultra-efficient and non-polluting way. In a context of food and environmental crisis requiring the development of a bio-inspired economy, the new enzymes found in the genomes of populations of extremophilic microorganisms (and called extremozymes) are of great interest [18]. Indeed, their robustness, their ability to perform chemical reactions under extreme conditions and sometimes the uniqueness of the chemical reactions they perform make them very interesting for multiple applications. For example, biotechnologies use extremozymes for the production of biofuels, bio-materials or pharmaceutical molecules. Halophilic enzymes are capable of operating in saline environments, in organic solvents and in a wide range of pH. They are used in food processing, in the paper industry as well as in the textile industry.

Encyclopedie environnement - extremophiles - communautes archees methanotrophes
Figure 7. Images of methanotrophic archaean communities and sulfate-reducing bacteria in the sediment. [Source © Ifremer]
Thermozymes and barozymes from thermophilic and/or barophilic organisms are hyperstable enzymes that can be used for food applications under conditions that eliminate the risk of bacterial contamination. They can be used under physico-chemical conditions corresponding to multiple processes used by the textile, leather, cosmetic or pharmaceutical industries. Because of their originality, abundance and the many interactions and symbioses that govern the dynamics of bacterial and Archaean communities in extreme environments, these microbes represent a largely unexplored genetic resource (Figure 7). Thus, the search for new biocatalysts and antibiotics based on the microbial biodiversity of extreme environments is a rapidly expanding discipline requiring the development of dedicated enzymatic and structural screening and characterization platforms.

 


References and notes

Cover image. [Source: © Bruno Franzetti]

[1] Abdoun E. (2014) Science & Vie 1161, 70-77

[2] Banik J.J. & Brady S.F. (2010) Current opinion in microbiology 13, 603-609

[3] Cowan D.A., Ramond J.B., Makhalanyane T.P. & De Maayer P. (2015) Curr Opin Microbiol 25, 97-102

[4] Gribaldo S., Forterre P. & Brochier-Armanet C. (2011) Research in microbiology 162, 1-4

[5] Forterre P. (2015) Frontiers in microbiology 6, 717

[6] Gribaldo S, Forterre P, Brochier-Armanet C. (2008) Les ARCHAEA : Evolution et diversité du troisième domaine du vivant, Bull. Soc. Fr. Microbiol.  23(3):137-145

[7] Brochier-Armanet C., Forterre P. & Gribaldo S. (2011) Curr Opin Microbiol 14, 274-281

[8] Oger P. & Franzetti B. (2012) Biofutur 336, 36-39

[9] Jebbar M., Franzetti B., Girard E. & Oger P. (2015) Extremophiles 19, 721-740

[10] Cavicchioli R., Siddiqui K.S., Andrews D. & Sowers K.R. (2002) Current Opin Biotech 13, 253-261

[11] Oren A. (2015) Current Opin Biotech 33, 119-124

[12] Inagaki F. et al (2015) Science 349, 420-424

[13] McKay C.P. (2014) Proc Natl Acad Sci USA 111, 12628-12633

[14] Coquelle N., Fioravanti E., Weik M., Vellieux F., & Madern D. (2007) J Mol Biol 374, 547-562

[15] Madern D., Ebel C. & Zaccai G. (2000) Extremophiles 4, 91-98

[16] Vauclare P., Marty V., Fabiani E., Martinez N., Jasnin M., Gabel F., Peters J., Zaccai G. & Franzetti B. (2015) Extremophiles 19, 1099-1107

[17] Franzetti B. (2010) Biofutur, 35-38

[18] Raddadi N., Cherif A., Daffonchio D., Neifar M. & Fava F. (2015) Applied microbiology and biotechnology 99, 7907-7913


环境百科全书由环境和能源百科全书协会出版 (www.a3e.fr),该协会与格勒诺布尔阿尔卑斯大学和格勒诺布尔INP有合同关系,并由法国科学院赞助。

引用这篇文章: FRANZETTI Bruno (2019年4月23日), Microbes in extreme environments, 环境百科全书,咨询于 2024年12月21日 [在线ISSN 2555-0950]网址: https://www.encyclopedie-environnement.org/en/life/microbes-in-extreme-environments/.

环境百科全书中的文章是根据知识共享BY-NC-SA许可条款提供的,该许可授权复制的条件是:引用来源,不作商业使用,共享相同的初始条件,并且在每次重复使用或分发时复制知识共享BY-NC-SA许可声明。