原油:其生物起源的证据

oil flow

  “被告请起立!说出你的姓名、年龄和出身。”

  如果必须在这样一个假想的法庭上出庭的话,“岩石油脂”、“古老”、“生物的”这些词汇将回答世界上所有关于原油的问题。对于石油的起源,科学家持不同的观点。一些科学家认为石油起源于矿物,因此具有非生物来源。然而,众多迹象表明,石油起源于生物,也就是说,它与几百万年前的生物有关。石油在世界各地留下了与生命相关的痕迹。本文从历史的角度回顾了石油起源于生物的各种证据。

1. 争论根源的观点和事实

1.1. 从古代哲学家到文艺复兴时期的学者

环境百科全书-石油-石油的起源
图1. 乔治·阿格里科拉著作封面,该书论述了石油的起源。
[来源:公共领域,通过维基共享](Georgius Aagricola:乔治·阿格里科拉;De ortu & caufis fubterraneorum:从地底升起;De natura eorum qux effluent ex terra:关于流出地球的事物的性质;De natura fofsilium:关于矿物的性质;De ueteribus & nouis metallis:新旧金属;Bermannus,fiue Dere metallica Dialogus:伯曼努斯,金属对话;Interpretatio Germanica uocum rei metallicae,addito Indice foeeundifsimo:金属的德语翻译,附加索引)

  尽管原油或其衍生物自新石器时代以来就已被人类使用[1],但其起源长期以来却一直是个谜。罗杰·培根[2]在1268年出版的专著《第三著作》(Opus Tertium)中写道,亚里士多德[3]和其他古代历史哲学家均未讨论过石油和沥青的起源。在文艺复兴时期,出现了关于石油起源的两种相互矛盾的假设。1546年,乔治·阿格里科拉[4]出版了《在地球的自然环境中》(De Natura eorum quae Efflunt ex Terra)(图1),在这部作品中首次提到了石油这个词,它来自拉丁语petra oleum (石油)。阿格里科拉拓展了亚里士多德关于石油从地下深处喷出的概念,提出沥青是由含硫蒸汽冷凝而来。安德烈亚斯·利巴维乌斯[5]在1597年出版的《炼金术》一书中提出,沥青是由古树的树脂转化形成。此后,一场漫长的科学辩论延续开来,一方观点支持石油的非生物起源,另一方认为石油是由石化有机物转化而来的。

1.2. 首批科学家相反的观点

环境百科全书-石油-蕨类和马尾草足印化石
图2. 在中央高原石炭纪(-3亿年)岩石的碳质页岩上发现的蕨类和马尾草足印化石。比例尺为1厘米。[来源:照片©A-莱捷尔-F.鲍丁(A.Lethiers –F.Baudin)]

  有趣的是,煤的生物起源从未引起过争议。煤中含有的植物化石为其生物起源提供了不可否认的证据(图2)[6]。俄罗斯科学家米哈伊尔·罗蒙诺索夫[7]液态石油和固体沥青联系起来,并承袭了利巴维乌斯的想法,在1757年提出了一个假说,即这两种碳质化石燃料源于植物废料温度和压力的作用下,在底层土壤中转化而来。19世纪初德国地质学家和化学家亚历山大··洪堡[8]和法国热力学家路易斯·约瑟夫·吕萨克[9]否定了该假说,认为石油是地球的原始化合物,通过低温喷发从深处升起。这种纯粹的化学假说并非没有论据,自20世纪中叶以来,俄罗斯学派广泛传播了石油的非生物起源理论,这种观点频繁出现,表明地球深处的石油比我们想象的要多得多。

1.3. 石油非生物起源支持者的论点

环境百科全书-石油-土卫六合成图像
图3. 卡西尼号探测器拍摄的土星卫星土卫六的合成图像(拼接)。绿色区域是甲烷和其他有机分子的云,表面有甲烷湖。[来源:©美国国家航空航天局(NASA)/喷气推进实验室(JPL)/亚利桑那大学/爱达荷大学]

  气态行星上应该不会出现生命。烃的存在表明非生物过程导致了简单烃分子的形成。土星卫星土卫六(图3)就是一个例子。土卫六的大气和表面都富含甲烷和乙烷。在坠落地球的陨石中发现了烃和相当复杂和高分子量的有机大分子。

  甲烷是在地幔岩浆岩的蚀变过程中形成的。在此过程中,一些富铁矿物风化过程中产生的氢气(H2)与二氧化碳(CO2)发生所谓的萨巴捷反应。该反应在高温高压下,在镍催化剂的作用下进行,产生甲烷和水。另外,将一氧化碳(CO)和二氢合成烃的费托反应可能在岩浆冷却时发生,并通过和CH2反应产生烃。最后,碳酸铁(FeCO3)在有水的情况下发生热分解也可以生成简单烃

  虽然不能否认非生物过程导致了烃的形成,但这些机制很难解释地球上石油的数量、多样性位置。石油来源于沉积有机质,即生物体,这一观点已被自然观察、实验室分析和实验广泛证实。

2. 通过自然观测获得证据

2.1. 沉积盆地中心积油

环境百科全书-石油-简化世界地质图
图4. 简化的世界地质图显示花岗岩或变质基底、造山带(=山脉)、火成岩和沉积盆地的主要区域。红色叠合带对应的主要含油区几乎都位于沉积盆地。[来源:©F. 鲍丁(Baudin)]。(Carton-basement:克拉通基底;Orogen:造山带;Volcanic domain:火山带;Oceanic crust:洋壳;Sedimentary basins:沉积盆地;Petroleum province:含油区)
  沉积岩对于石油系统的存在至关重要,因为在绝大多数情况下,沉积岩是石油系统的源岩、储层和盖层。世界上99%以上的石油储量位于沉积盆地,在岩浆或变质岩中出现的情况非常罕见(图4)。当石油被圈闭在花岗岩或其他基岩中时,很容易证明它是从邻近的沉积盆地转移而来。在非沉积岩的断层上从未发现过石油证据,而在非沉积岩中挖掘的数以万计的矿井中,也极少有石油渗出。20世纪90年代初,瑞典对与陨石坑撞击有关的岩石进行了勘探,虽然发现了一些石油痕迹,但并未发现任何具有商业价值的矿藏。下文提出的一些地球化学论据驳斥了石油的非生物起源。

2.2. 旋光性的证据

环境百科全书-石油-手性化合物的左旋和右旋异构体的表征
图5. 手性化合物的左旋和右旋异构体的表征。本例中是氨基酸。
[来源:文章(πϵρήλιο)℗(手征性(Chirality with hands).jpg)[公共领域],通过维基共享。]
  许多生物化合物具有旋光活性,即当光束穿过它们时,会向右或向左偏转。这些化合物分别称为右旋化合物(如蔗糖)或左旋化合物(如果糖)。生物体内几乎所有的氨基酸都是左旋的。非生物化合物不具备这种旋光性。它们在光学上不活跃,因为它们具有相同比例的手性化合物左旋和右旋异构体(图5)。生命倾向于优先选择一种异构体而不是另一种,因此生物化合物具有光学特性。然而,石油具有旋光性,这表明其起源于生物。不过,这种特性往往会随着石油的热成熟度而消失,但当微生物降解石油时,这种特性也会被放大。

3. 地球化学证据

3.1. 碳同位素

环境百科全书-石油-同位素比值变化范围
图6. 以海水中的CO2为参考的不同陆源物质12C/13C同位素比值变化范围。负值对应13C消耗,这里表示为‰,Corg:有机碳。
[来源:改编自特朗伯和德鲁菲尔(Trumbore & Druffel);参考文献[10]](Petroleum:石油;Coal:煤;Fresh water:淡水;Corg marine:海洋有机碳;Atmosphere:大气;Terrestrial plants:陆生植物;Carbonates:碳酸盐;Corg soils:土壤有机碳;Oceanic surface:海洋表面;Biogenic methane:生物甲烷;Volcanic:火山岩;Deep ocean:深海)
  碳有两种自然稳定的同位素:12C 和13C [10]光合作用中由大气中CO2或溶解在水中的HCO3形成的有机物13C的含量大大减少因为植物更倾向于固定12C。在大多数植物中,与无机碳源相比,这种损耗约为0.02%(这里也写作δ13 C=-20‰)。与生物组织中的有机物相比石油化石有机物有相同的13C亏损(图6)[11]。无论考虑的是单种分子还是全部有机物,这种同位素亏损都是系统性的。没有已知的无机过程可以形成具有这样13C亏损的高分子量分子。就气体而言,从甲烷到丙烷以及不同形式的丁烷,12C的比例都在降低。这与沉积有机物(又称干酪根)或石油热裂解过程中的同位素动力学分馏相一致。相反,从甲烷到丁烷的12C增加,表征了费托反应的聚合产物。这种独特的同位素特征在世界上任何气田中都没有发现。

3.2. 在石油中发现卟啉

  德国化学家汉斯·菲舍尔[12]因其对有机色素特别是血液(血红素)和植物(叶绿素)中的有机色素的研究而获得诺贝尔化学奖(1930年)。

环境百科全书-石油-叶绿素的化学结构
图7. 叶绿素的化学结构。
由四吡咯核和叶绿醇侧链组成。植物死亡后,叶绿素分子分裂为两部分,并根据沉降介质的条件不同而发生不同的演变。四吡咯核部重新组织,形成一种叫做卟啉的分子。卟啉有几十种类型,所有的石油都含有这些分子,这无疑证明了卟啉的生物起源。[来源:©F. 鲍丁(Baudin)](Chlorophyll molecule:叶绿素分子;Re-arrangement:重新排列;Cut during diagenesis:成岩作用中断裂;Phytol chain:植醇链;Porphyrin:卟啉)
  叶绿素是绿色植物的主要色素,它吸收了部分太阳能,使光合作用成为可能。在分子水平(图7),叶绿素由两部分组成:极性(即水溶性)“头部”,由四个吡咯核组成,对称地围绕镁原子;和一个叶绿醇“尾巴”,由20个非极性碳原子(即脂溶性)组成的长醇链。叶绿素有五种形式(a、b、c、d、e),每种都有自己的吸收光谱。植物死亡后,四吡咯核叶绿醇侧链分离并分别演化。四吡咯核发生轻微重组,特别是镁被镍或氧化钒取代,从而产生一系列生物标志物:卟啉

  汉斯·菲舍尔的学生阿尔弗雷德·特雷布斯[13]在1936年强调,卟啉普遍存在原油和富含干酪根的粘土中。他指出卟啉从叶绿素转化而来的方式,从而提供了卟啉来源于植物的明确证据。阿尔弗雷德·特雷布斯因此被认为是有机地球化学之父。

3.3. 越来越多的生物标志物

  自这一发现以来,我们不再计算油中检测到的分子的数量了。这些分子源自生物体中已知的某种分子,甚至与之完全相同(图8)。这些分子被称为生物标志物,是真正的地球化学化石,因为它们的结构非常接近生物体的生物分子。

环境百科全书-石油-生物标记物及其生物前体的例子
图8. 生物标志物(地球化学化石)及其生物前体示例。
[来源:©F. 鲍丁(Baudin)](Biological precursor:母质来源;Re-arrangement:重新排列;Fossil molecule:化石分子;Biomarker:生物标志物;Fatty acid in n-C16:n-C16脂肪酸;Cholesterol:胆固醇;Cholestane:胆甾烷;Cholestene:胆甾烯;Aromatic steroid:芳香甾类)
  事实上,许多原核生物和真核生物的细胞膜、叶角质层、色素或树脂,都是由较为稳定的生物分子组成。这些分子被保存在沉积物中,几乎不会发生变化,仍然可以识别。一般来说,只有官能团(例如-OH或-COOH)和双键会在大约10到100米的埋深下消失。除此之外,最终保留下来的烃类骨架往往能够识别其生物分子前体(图8)。这些特征分子可以从沉积有机物的萃取物或干酪根中获取,与生物体的叶纹或矿化遗骸一样,完全符合化石的定义。

  随着时间的推移和深度温度的升高,干酪根经过天然热裂解形成石油时,其中一些生物标志物保持不变,甚至成为石油的一部分。因此,很难想象所有的石油中都存在如此多的复杂分子,而这些分子只能通过非生物过程产生。

3.4.  与浮游植物多样化共同进化的海洋石油的化学特征

环境百科全书-石油-原油中甾烷相对比例与年龄关系的三元图
图9. 414个原油中甾烷相对比例与年龄关系的三元图。随着地质年代的推移,除一种非常古老的石油(6亿年)外, C28甾烷的比例一直在增加,而C29甾烷的比例却在减少。
[来源:改编自格兰瑟姆和韦克菲尔德(Grantham & Wakefield);参考文献[13]](Offshore Venezuela:内瑞拉近海:Monterey,Calif 蒙特利,加利福尼亚州;Castellon,Spain:卡斯特利翁,西班牙;Mowry(USA):莫里(美国);Cretaceous and upper Jurassic (N.Sea): 白垩纪和晚侏罗系(北海);Upper Palaeozoic oils of USA:美国晚古生代石油;Streppenosa:斯特雷佩诺萨(上三叠统地层);Mullusa:穆卢萨;Liassic NW Europe:西北欧(早株罗系)里阿斯统;Oman:阿曼;Diyab Qatar:迪亚布 卡塔尔;Lower Palaeozoic oils:晚古生代油;HUOF:胡夫:Precambrian:前寒武纪;Palaeozoic:古生代;Cambrian:寒武纪;Ordovician:奥陶纪;Silurian:志留纪;Devonian:泥盆纪;Carboniferous:石炭纪;Permian:二叠纪;Mesozoic:中生代;Trias:三叠纪;Jurassic:侏罗纪;Cretac:白垩纪;Cenozoic:新生代;Tertiairy:第三纪)
  在生物标志物中,甾烷是一个重要的分类。这些分子来自固醇类,在动植物体内起到维持细胞膜的结构和功能完整性的作用。原油发现了大量具有27、28、29、29甚至30个碳原子的甾烷。

  20世纪80年代末,壳牌石油化工公司的地球化学家分析了6.5亿至4500万年前的海洋岩石中的400多种原油,提取并鉴定了不同种类的甾烷,并通过碳原子数将其分组。结果表明,随着地质年代的推移,拥有28个碳原子的甾烷比例在增加,而拥有29个碳原子的甾烷比例在下降,拥有27个碳原子的甾烷几乎保持稳定(图9)[14]

环境百科全书-石油-浮游植物群的分布和甾烷的比值
图10. 比较过去6亿年间最重要的浮游植物群的分布,以及海相烃源岩油中28 – 29个碳原子的甾烷的比值。
[来源:改编自格兰瑟姆和韦克菲尔德;(Grantham & Wakefield)参考文献[13]。] (Precambrian:前寒武纪;Palaeozoic:古生代;Cambrian:寒武纪;Ordovician:奥陶纪;Silurian:志留纪;Devonian:泥盆纪;Carboniferous:石炭纪;Permian:二叠纪;Mesozoic:中生代;Trias:三叠纪;Jurassic:侏罗纪;Cretac:白垩纪;Cenozoic:新生代;Tertiairy:第三纪Cyanobacteria:蓝藻细菌;Acritarches:疑源类;Green algae:绿藻类;Discoasterids:盘星藻类;Ebridians:硅质鞭毛类;Diatoms:硅藻类;Euglenids:眼虫类;Silicoflagellates:硅鞭藻类;Coccolithophorids:颗石藻类;Dinoflagellates:钩鞭藻;Ratio of 28-carbon steranes to 29-atom steranes:28-碳的甾烷和29个碳原子甾烷的比例;Age(million years):年代(百万年);Present-day:至今)
  对于地球化学家来说,这些变化并不反映随着时间的推移特定种类的海洋生物丰度增加的固醇化学进化,而是与浮游植物生物的多样化有关,古生物学家从其矿化遗骸中认识到这一点。在距今1.8亿年至6500万年前的侏罗纪和白垩纪,浮游植物的多样化显著加快。因此,拥有28个碳原子的甾烷来源应与这些时期海洋中微藻的出现和多样性有关,如甲藻、颗石藻(白垩的起源)和硅藻(图10)。

  海洋石油化学特征的演变与浮游植物化学特征的进化同步进行,这显然表明了一种因果关系,并为石油的生物起源提供了证据。

4. 通过实验证明

环境百科全书-石油-对比原油(左)和岩石(右)的分子特征
图11. 对比原油(左)和岩石提取物(右)的分子特征,即不同分子的分布和丰度。每个峰对应一个特定的分子,其高度与其在混合物中的浓度成正比。这里编号为15,20,25的峰分别对应于含有15,20,25个碳原子的直链烷烃。峰a和峰b对应叶绿素叶绿醇链衍生的支链烷烃。因此,我们可以把每个分布看作是一个分子指纹,就像每个人的特征指纹一样。石油和烃源岩抽提物分子印迹的相似性是它们隶属关系的证据。[来源:©F. 鲍丁(Baudin)](Abundance:丰度;Crude oils:原油;Source rock extracts:烃源岩中抽提;Pristane:姥鲛烷;Phyane:植烷;Retention time:保留时间)
  18世纪末,在煤炭工业发展的同时,石油产品通过加热富含干酪根的沉积岩制造而成。所获得的产品与地表渗出的天然石油或后来在深水中发现的石油相似,这为罗蒙诺索夫假说提供了论据(见第1.2节)。

  在20世纪下半叶,随着分析技术的发展,在实验室中可以重建沉积盆地深部的温度和压力条件。甚至有可能在有水的情况下进行这些实验,水分子在陆地岩石中含量非常丰富。在这些实验中获得的产品物理化学性质与天然石油非常相似。分析其分子组成,天然石油中的分子与加热干酪根产生的分子在性质和丰度上都非常相似(图11)。它们如此相似,地球化学家甚至认为这些分子分布有点像指纹或DNA,并以此从基因上把天然石油和它的源岩联系起来。

5. 要记住的信息

  • 大量证据表明石油来源于生物,包括直接来自活生物体合成的分子,无论是原核生物还是真核生物的分子。
  • 因此,卟啉这一石油中无处不在的分子来自不同类型的叶绿素。
  • 同样,原油中的化石分子很容易附着在其他色素(例如类胡萝卜素)或构成原核生物或真核生物细胞壁的分子上。
  • 在石油分子中,12C的比例大于13C,这一所谓的同位素特征支持了石油起源于生物的观点。因为在相同的比例下,生命选择轻同位素。
  • 最后,99%以上的油田位于沉积盆地,即沉积物沉积在曾经存在生命的古代海洋或湖泊底部,如矿化的化石所示。
  • 一般来说,油源岩主要含有源自海洋或湖泊浮游植物的有机物,并或多或少受到了细菌的改造。

参考资料及说明

封面图片:天然石油渗流。[来源:© F.伯杰拉特]

[1] 我们知道一种新石器时代的石斧是用沥青作为“胶水”压制而成。

https://www.franceculture.fr/emissions/lessai-et-la-revue-du-jour-14-15/le-bitume-dans-lantiquite-revue-archeopages(法语广播节目)

[2] 罗杰·培根(1214年-1294年),英国哲学家、科学家和炼金术士,科学方法之父之一。

[3] 亚里士多德(公元前384年–公元前322年),古希腊哲学家。所学之识几乎涵盖他那个时代所有的知识领域:生物学、物理学、形而上学、逻辑学、诗学、政治、修辞,偶有涉及经济学。

[4] 格奥尔格乌斯·阿格里科拉,本名格奥尔格·帕夫尔(1494年–1555年),16世纪德国科学家、矿物学和冶金学之父。

[5] 安德烈亚斯·利巴维乌斯(1555–1616),本名安德烈亚斯·利博,德国化学家和医生。1597年出版的《炼金术》是第一本系统化学著作。

[6] 煤碳沉积的形成始于石炭纪,当时大量所谓的高等植物碎屑(树木、蕨类植物……)堆积在缺氧的浅水层(泥炭型环境)中。这些条件使部分有机物逃脱分解者的作用。数百万年来,这些植物碎屑的积累和沉积导致煤层温度、压力和氧化条件逐渐发生变化,从而形成了含碳量日益丰富的化合物:泥炭(50至55%)、褐煤(55至75%)、煤炭(75至90%)和无烟煤(>90%)。大多数煤的石油潜力较低。另一方面,它们在成熟时会产生气体,特别是甲烷,这是煤矿燃烧的原因。

[7] 米哈伊尔·瓦西里耶维奇·洛莫诺索夫(1711–1765),化学家、物理学家、天文学家、历史学家、哲学家、诗人、剧作家、语言学家、斯拉夫语言文学家、教师和俄罗斯镶嵌艺术家。

[8] 亚历山大·冯·洪堡(1769年–1859年),德国博物学家、地理学家和探险家。法国科学院副院士和巴黎地理学会会长。他在探险中进行了高质量的勘测,为科学探索奠定了基础。

[9] 路易斯·约瑟夫·盖伊·卢萨克(1778年-1850年),法国化学家和物理学家,以研究气体的特性而闻名。

[10] 放射性碳14C最初存在于石油起源化合物(由光合作用形成)中,其比例与当时生活的光合作用生物中的比例相同。然而,由于该元素的地质尺度(5700年)相对较短,当前的石油不再包含14C,因此无法通过这种技术确定其年代。目前,该特性用于区分造成空气污染的颗粒物,例如来自石油产品(汽油、柴油)的颗粒物和来自木材燃烧产生的颗粒。

[11] Trumbore S.E. & Druffel E.R.M. (1995) Carbon isotopes for characterizing sources and turnover of nonliving organic matter. In R. G. Zepp & C. Sonntag (Eds.), Role of Nonliving Organic Matter in the Earth’s Carbon Cycle (pp. 7-22). Chichester: John Wiley & Sons Ltd.

[12] 汉斯·菲舍尔(1881年-1945年),德国化学家,专门从事有机化学。

[13] 阿尔弗雷德·特雷布斯(1899–1983),德国有机化学家、有机地球化学先驱。

[14] Grantham P.J. & Wakefield L.L. (1988) Variations in the sterane carbon number distributions of marine source rock derived crude oils through geological time. Organic Geochemistry,12-1,61-73.


环境百科全书由环境和能源百科全书协会出版 (www.a3e.fr),该协会与格勒诺布尔阿尔卑斯大学和格勒诺布尔INP有合同关系,并由法国科学院赞助。

引用这篇文章: BAUDIN François (2024年3月12日), 原油:其生物起源的证据, 环境百科全书,咨询于 2024年12月21日 [在线ISSN 2555-0950]网址: https://www.encyclopedie-environnement.org/zh/vivant-zh/oil-evidence-biological-origin/.

环境百科全书中的文章是根据知识共享BY-NC-SA许可条款提供的,该许可授权复制的条件是:引用来源,不作商业使用,共享相同的初始条件,并且在每次重复使用或分发时复制知识共享BY-NC-SA许可声明。

Crude oil: evidences for its biological origin

oil flow

“Will the defendant please rise! Please state your first and last name, age and origin?”
Petra Oleum, Old and Biological would answer all the crude oil in the world if they had to appear before such an imaginary court. Subjected to the question of scientists, oil has been seen by some as a fluid of mineral origin, therefore having an abiotic origin… However, there are many indications of its biological origin, that is, its filiation with what was alive, even if it was millions of years ago. Oil itself confesses by leaving traces everywhere that connect it to life. This article reviews the various proofs of the biological origin of oil by situating them in a historical context.

1. Ideas and facts at the root of a controversy

1.1. From ancient philosophers to Renaissance scholars

georgius agricola - histoire petrole - origine petrole - petrole
Figure 1. Cover page of Georgius Agricola’s book, in which he discusses the origin of oil. [Source: Public domain, via Wikimedia Commons]
If crude oil or its derivatives have been used by man since the Neolithic [1], its origin has long remained mysterious. In his treatise Opus Tertium, published in 1268, Roger Bacon [2] comments on the absence of discussion on the origin of oils and bitumen by Aristotle [3] and other philosophers of Ancient History. It was during the Renaissance that two contradictory hypotheses about the origin of oil emerged. In 1546, Georgius Agricola [4] published De Natura eorum quae Efflunt ex Terra (Figure 1), a work in which the first mention of the word oil appears, from the Latin petra oleum (stone oil). Agricola extends Aristotle’s concept of exhalations from the depths of the Earth and proposes that bitumen be the condensation of sulphurous vapours. Andreas Libavius [5] theorized in 1597 in his book Alchemia that bitumen is formed from the resin of old trees. Since then, a long scientific debate has continued between those who support the abiotic origin of oil and those who see it as a product derived from the transformation of fossilized organic matter.

1.2. Opposite views of the first scientists

empreintes fougeres - fossiles - schiste carbonneux - petrole - fossil fern
Figure 2. Fossil fern and horsetail footprints on a carbonaceous shale from carboniferous rocks (-300 million years) in the Massif Central. The scale bar is 1 cm long. [Source: Photo © A. Lethiers-F. Baudin]
It is interesting to note that the biological origin of coals has never been disputed because the remains of fossil plants they contain provide undeniable proof of this (Figure 2) [6]. Making a link between these two types of carbonaceous fossil fuels, and taking up Libavius’ idea, the Russian scientist Mikhail Lomonossov [7] formulated in 1757 the hypothesis that liquid oil and solid bitumen would originate from plant waste transformed in the subsoil under the effect of temperature and pressure. This hypothesis was rejected at the beginning of the 19th century by the German geologist and chemist Alexander von Humboldt [8] and the French thermodynamicist Louis Joseph Gay-Lussac [9], both of whom made oil a primordial compound of the Earth rising from great depths through cold eruptions. This purely chemical hypothesis is not without argument and a Russian school of thought has widely disseminated this theory of an abiotic origin of oil since the middle of the 20th century; an idea that regularly resurfaces to suggest that there would be much more oil than we think in the depths of the Earth.

1.3. The arguments of the proponents of an abiotic origin of oil

titan - lunes saturne - sonde cassini - methane - petrole - Titan saturn's moon
Figure 3. Composite image (mosaic) of Titan, one of Saturn’s moons, as seen by the Cassini probe. Greenish areas are clouds of methane and other organic molecules, while the surface contains methane lakes. [Source: © NASA/JPL/University of Arizona/University of Idaho]
The presence of hydrocarbons on gaseous planets, where life is not supposed to have prospered, is evidence that abiotic processes lead to the formation of simple hydrocarbon molecules. This is the case, for example, on Titan (Figure 3), one of Saturn’s moons, whose atmosphere and surface are rich in methane and ethane. Hydrocarbons, and even fairly complex and high molecular weight organic macromolecules, are also found in meteorites that have fallen to Earth.

Methane is formed during the alteration of volcanic rocks in the Earth’s mantle where dihydrogen (H2) produced during the weathering of some iron-rich minerals reacts with carbon dioxide (CO2) during a so-called Sabatier reaction. This reaction takes place at high temperatures and pressures in the presence of a nickel catalyst to produce methane and water. Other Fischer-Tropsch reactions -which combine carbon monoxide (CO) and dihydrogen to convert them into hydrocarbons- could occur when cooling magma and produce hydrocarbons by assembling CH2 units. Finally, the thermal decomposition of iron carbonate (FeCO3) in the presence of water can also produce simple hydrocarbons.

While it cannot be denied that abiotic processes lead to the formation of hydrocarbons, these mechanisms can hardly account for the quantity, diversity and location of oil occurences on Earth. The idea that oil originates from sedimentary organic matter, i.e. organisms that have been living, is widely demonstrated by natural observations, laboratory analyses and experiments.

2. Evidence through natural observations

2.1. Oil accumulations in the heart of sedimentary basins

Figure 4. Simplified geological map of the World showing the main domains of granitic or metamorphic basements, orogens (= mountain ranges), volcanic provinces and sedimentary basins. The superimposed red zones correspond to the major oil provinces, which are almost all located in sedimentary basins. [Source: © F. Baudin].
Sedimentary rocks are essential for a petroleum system to exist since they constitute in the vast majority of cases the source rock, the reservoir and the cover of this system. More than 99% of the world’s oil reserves are located in sedimentary basins and occurences in magmatic or metamorphic rocks are rare (Figure 4). When oil is trapped in granite or other basement rocks, it is fairly easy to demonstrate that it has migrated from the adjacent sedimentary basin. No oil evidence has ever been found along faults in non-sedimentary continental rocks and extremely rare are oil seeps in the tens of thousands of mines dug in non-sedimentary rocks. The exploration of rocks associated with the impact of a meteorite crater in Sweden in the early 1990s, while it did reveal some traces of oil, did not reveal any deposits of commercial interest. The abiogenic origin of these oils is refuted by several of the geochemical arguments developed below.

2.2. The evidence by the deviation of light

isomeres levogyres - compose chiral - acide anime - Representation of levogyrous and dextrous isomers of a chiral compound
Figure 5. Representation of levorotatory and dextrorotatory isomers of a chiral compound, in this case an amino acid. Source: πϵρήλιο ℗ (Chirality with hands.jpg) [Public domain], via Wikimedia Commons.
Many biological compounds are optically active, i.e. they deflect a light beam passing through them to the right or left when facing light. These compounds are respectively referred to as dextrorotatory (e.g. sucrose) or levorotatory (e.g. fructose). Virtually all amino acids in living organisms are levogyrous. Abiotic compounds do not have this rotational power of light. They are optically inactive because they have an equal proportion of the levorotatory and dextrorotatory isomers of a chiral compound (Figure 5). Life tends to preferentially select one isomer over the other, hence the optical property of biological compounds. However, oil is most often optically active, suggesting its biological origin. However, this property tends to disappear with the degree of thermal maturation of the oils, but it can also be amplified when microbes degrade the oil.

3. Geochemical evidence

3.1. Carbon isotopes

Figure 6. Range of variation in the isotopic ratio 12C/13C of different terrestrial materials. The CO2 of seawater is taken as a reference; negative values correspond to a 13C depletion which is expressed here at ‰ Corg: Organic carbon. [Source: Adapted from Trumbore & Druffel (ref. [10])]
Carbon has two naturally stable isotopes: 12C and 13C [10]. The organic matter formed during photosynthesis from atmospheric CO2 or HCO3 dissolved in water is much depleted in 13C because plants preferentially fix 12C. In most plants this depletion is in the order of 0.02% (which is also noted at δ13C = – 20 ‰) compared to the inorganic carbon source. Oil and fossil organic matter have the same 13C depletion as organic matter in living tissues (Figure 6) [11]. This isotopic deficit is systematic, whether we consider individual molecules or total organic matter. No known inorganic processes lead to the formation of high molecular weight molecules with such a 13C deficiency. For gases, the proportion of 12C decreases from methane to propane and in the different forms of butane; this is consistent with the kinetics of isotopic fractionation during thermal cracking of sedimentary organic matter (also called kerogen) or petroleum. The opposite trend, i.e. an increase in 12C from methane to butane, characterizes the polymerization products of the Fischer-Tropsch reaction. This singular isotopic signature is not found in any gas field in the world.

3.2. The discovery of porphyrins in oil

The German chemist Hans Fischer [12] was awarded the Nobel Prize for Chemistry (1930) for his research on organic pigments, particularly in blood (hemin) and plants (chlorophyll).

Figure 7. Chemical structure of chlorophyll consisting of a tetrapyrrole core and a phytol side chain. After plant death, the chlorophyll molecule splits in two and each part evolves differently according to the conditions of the sedimentation medium. The tetrapyrrole core partially re-organizes itself to give a molecule called porphyrin. There are dozens of types of porphyrins and all oils contain them, which is undeniable proof of their biological origin. [Source: Scheme © F. Baudin]
Chlorophyll is the main pigment in green plants, with which it absorbs part of the solar energy, making photosynthesis possible. At the molecular level (Figure 7), it consists of two parts : a polar (i.e. water-soluble) “head” formed of four pyrrole core, symmetrically surrounding a magnesium atom, and a phytol “tail”; a long alcohol chain comprising 20 carbon atoms that is non-polar (i.e. soluble in lipids). There are five forms of chlorophyll (a, b, c, d, e), each with its own absorption spectrum.

After plants death, the tetrapyrrole nucleus and the phytol side chain separate and evolve differently. The tetrapyrrole nucleus reorganizes very slightly – in particular magnesium is replaced by nickel or vanadium oxide – thus giving rise to a family of biomarkers: porphyrins.

Alfred Treibs [13], a student of Hans Fischer, highlighted in 1936 the ubiquity of porphyrins in crude oils and kerogen-rich clays and the ways in which they are transformed from chlorophyll, thus providing clear evidence of their plant origin. Alfred Treibs is therefore considered to be the father of organic geochemistry.

3.3. More and more biomarkers

Since this discovery, we no longer count the number of molecules detected in oils that are derived from or even strictly identical to a molecule known in living organisms (Figure 8). These molecules, called biomarkers, are true geochemical fossils because they have a structure very close to the biomolecules of living organisms.

Figure 8. Example of biomarkers (= geochemical fossils) and their biological precursors. [Source: Scheme © F. Baudin]
Indeed, a large number of cell membranes of prokaryotes and eukaryotes, but also leaf cuticles, pigments or resins, are made of resistant biomolecules that are preserved in sediments where they alter little and remain identifiable. In general, only functional groups (-OH or -COOH for example) and double bonds disappear under about ten to a hundred metres of burial. But beyond that, the hydrocarbon skeleton – which is finally preserved – often makes it possible to identify its biomolecular precursors (Figure 8). These characteristic molecules, which can be recovered in the extractable fraction of sedimentary organic matter or in kerogen, perfectly meet the definition of a fossil as are leaf prints or mineralized remains of organisms.

When kerogen undergoes natural thermal cracking to form oil as a result of increasing temperature at depth and over time, some of these biomarkers remain unchanged and even form part of the oil. It is therefore difficult to imagine so many complex molecules present in all oils that would only be produced by abiotic processes.

3.4. A chemical signature of marine oils that co-evolves with phytoplankton diversification

Figure 9. Ternary diagram of the relative proportion of steranes in 414 crude oils as a function of their age. With the exception of a very old oil (600 million years old), there has been an increase in the proportion of C28 sterane at the expense of C29 over geological time. [Source: Adapted from Grantham & Wakefield; ref. [13]]
Among biomarkers, steranes are an important class. These molecules are derived from sterols that play a role in plants and animals in maintaining the structural and functional integrity of cell membranes. A large number of steranes with 27, 28, 29, 29 or even 30 carbon atoms are identified in crude oils.

In the late 1980s, Shell geochemists analyzed more than 400 crude oils generated by 650 to 45 million year-old marine rocks and extracted and identified the different types of steranes and grouped them by increasing number of carbon atoms. It appears that the proportion of steranes with 28 carbon atoms increases over geological time while the proportion of steranes with 29 carbon atoms decreases; that of steranes with 27 carbon atoms remains almost stable (Figure 9) [14].

Figure 10. Comparison of the distribution of the most important phytoplankton groups over the past 600 million years and the ratio of steranes with 28 to 29 carbon atoms found in oils from marine source rocks. [Source: Adapted from Grantham & Wakefield; ref. [13]]
For these geochemists, these changes do not reflect the chemical evolution of sterols of a particular variety of a marine organism that would become more abundant over time, but is related to the diversification of phytoplankton organisms, recognized by paleontologists from their mineralized remains. This phytoplankton diversification accelerated significantly during the Jurassic and Cretaceous periods, between 180 and 65 million years ago. The sources of steranes with 28 carbon atoms should thus be linked to the appearance and diversification in the oceans of these periods of microalgae such as dinoflagellates, coccolithophorids (the origin of chalk) and diatoms (Figure 10).

This evolution of the chemical signature of marine oils in parallel with that of phytoplankton obviously suggests a cause-and-effect relationship and provides an element in favour of the biological origin of the oils.

4. Proof through experimentation

Figure 11. Comparison of molecular signature, i.e. the distribution and abundance of different molecules, in crude oils (left) compared to that extracted from rocks (right). Each peak corresponds to a specific molecule and its height is proportional to its concentration in the mixture. Here the peaks numbered 15, 20, 25 correspond to linear alkanes containing 15, 20 and 25 carbon atoms respectively. Peaks a and b correspond to branched alkanes derived from the chlorophyll phytol chain. We can therefore see each distribution as a molecular fingerprint, like a fingerprint that is characteristic of each individual. The similarity between the molecular imprint of oils and source rock extracts is evidence of their filiation. [Source: © F. Baudin]
At the end of the 18th century, and in parallel with the development of the coal industry, petroleum products were manufactured by heating sedimentary rocks rich in kerogen. The similarity of the products obtained with natural oils seeping at the surface, or those found later in deep pools, provided arguments in favour of the Lomonossov hypothesis (see section 1.2).

With the development of analytical techniques in the second half of the 20th century, it was possible to reconstruct in the laboratory the temperature and pressure conditions existing at depth in sedimentary basins. It is even possible to perform these experiments in the presence of water, a molecule so abundant in terrestrial rocks. The products obtained during these experiments are physically and chemically very comparable to natural oils. When analysed in terms of their molecular composition, there is a striking similarity between the molecules present in natural oil and those produced by heating kerogen, both in terms of the nature and abundance of the molecules (Figure 11). They are so similar that geochemists consider these molecular distributions as a bit like a fingerprint or DNA and use them to genetically link a natural oil to its source rock.

5. Messages to remember

  • There is a wealth of evidence for the biological origin of oils, including the presence of molecules that derive directly from molecules synthesized by living organisms, whether prokaryotes or eukaryotes.
  • Thus, porphyrins, ubiquitous molecules in oils, are derived from different types of chlorophyll.
  • Similarly, fossil molecules are found in crude oils that can easily be attached to other pigments (carotenoids for example) or molecules that make up the cell walls of prokaryotes or eukaryotes.
  • The greater proportion of 12C compared to 13C in petroleum molecules, the so-called isotopic signature, is also in favour of their biological origin since life selects the light isotope in the same proportions.
  • Finally, more than 99% of the oil fields are located in sedimentary basins, i.e. sediments deposited on the bottom of ancient seas or lakes where life was present, as shown by mineralized fossils.
  • Generally speaking, oil source rocks contain mainly organic matter derived from marine or lacustrine phytoplankton biomass, more or less modified by bacteria.

 


References and notes

Cover image. Natural oil seepage [Source: © F. Bergerat]

[1] We know of a Neolithic stone axe that was pressed together with bitumen as ‘glue’. https://www.franceculture.fr/emissions/lessai-et-la-revue-du-jour-14-15/le-bitume-dans-lantiquite-revue-archeopages (radio program in french)

[2] Roger Bacon (1214 – 1294), an English philosopher, scientist and alchemist, is considered one of the fathers of the scientific method.

[3] Aristotle (384 BC – 322 BC), Greek philosopher of antiquity. He is one of the few to have covered almost all the fields of knowledge of his time: biology, physics, metaphysics, logic, poetics, politics, rhetoric and, occasionally, economics.

[4] Georgius Agricola, known as Agricola, by his real name Georg Pawer (1494 – 1555), a 16th century German scientist, considered the father of mineralogy and metallurgy.

[5] Andreas Libavius (1555 – 1616), real name Andreas Libau, German chemist and doctor. Alchemia, published in 1597, is the first book of systematic chemistry.

[6] The formation of coal deposits began in the Carboniferous with the accumulation of very large quantities of so-called higher plant debris (trees, ferns…) in shallow water layers poor in oxygen (peat-type environment). These conditions allowed some of the organic matter to escape the action of the decomposers. For several million years, the accumulation and sedimentation of these plant debris caused a gradual change in temperature, pressure and oxidation-reduction conditions in the coal layer, leading to the formation of compounds that are increasingly rich in carbon: peat (50 to 55%), lignite (55 to 75%), coal (75 to 90%) and anthracite (> 90%). Most coals have a low oil potential. On the other hand, they produce gas as they mature, in particular methane, which is the cause of firedamping in coal mines.

[7] Mikhail Vasilievich Lomonossov (1711 – 1765) is a chemist, physicist, astronomer, historian, philosopher, poet, playwright, linguist, Slavicist, teacher and Russian mosaicist.

[8] Alexander von Humboldt (1769 – 1859), is a German naturalist, geographer and explorer. Associate member of the French Academy of Sciences and President of the Société de Géographie de Paris. Through the quality of the surveys he conducted during his expeditions, he laid the foundations for scientific exploration.

[9] Louis Joseph Gay-Lussac (1778 – 1850), is a French chemist and physicist, known for his studies on the properties of gases.

[10] Radioactive carbon 14C was initially present in the petroleum-originating compounds (formed from photosynthesis) and in the same proportions as in photosynthetic organisms living at the time. However, since the period of this element is relatively short on a geological scale (5700 years), the current oil no longer contains 14C and therefore cannot be dated by this technique. This property is currently used to distinguish between particles responsible for air pollution from those derived from petroleum products (gasoline, diesel) and those derived from wood combustion, for example.

[11] Trumbore S.E. & Druffel E.R.M. (1995) Carbon isotopes for characterizing sources and turnover of nonliving organic matter. In R. G. Zepp & C. Sonntag (Eds.), Role of Nonliving Organic Matter in the Earth’s Carbon Cycle (pp. 7-22). Chichester: John Wiley & Sons Ltd.

[12] Hans Fischer (1881 – 1945), a German chemist specialising in organic chemistry.

[13] Alfred E. Treibs (1899 – 1983), a German organic chemist and pioneer in organic geochemistry.

[14] Grantham P.J. & Wakefield L.L. (1988) Variations in the sterane carbon number distributions of marine source rock derived crude oils through geological time. Organic Geochemistry, 12-1, 61-73.


环境百科全书由环境和能源百科全书协会出版 (www.a3e.fr),该协会与格勒诺布尔阿尔卑斯大学和格勒诺布尔INP有合同关系,并由法国科学院赞助。

引用这篇文章: BAUDIN François (2021年4月5日), Crude oil: evidences for its biological origin, 环境百科全书,咨询于 2024年12月21日 [在线ISSN 2555-0950]网址: https://www.encyclopedie-environnement.org/en/life/oil-evidence-biological-origin/.

环境百科全书中的文章是根据知识共享BY-NC-SA许可条款提供的,该许可授权复制的条件是:引用来源,不作商业使用,共享相同的初始条件,并且在每次重复使用或分发时复制知识共享BY-NC-SA许可声明。