黏土:令人惊讶的天然纳米材料

  黏土是人们日常生活和所处环境中无处不在的一类材料。干燥时,像岩石一样坚硬;泥泞时,像油一样流动。如今黏土被用于建造大型建筑,且常构成城市地区的地基。那么,土木工程技术人员是如何克服黏土带来的困难呢?

1. 一种通用材料

环境百科全书-黏土-洞穴的野牛
图1. Tuc d’Audoubert 洞穴的野牛[4]
[图片来源: Leroi-Gourhan Arlette, 1984: L’Art des cavernes: Atlas des grottes ornées paléolithiques françaises (CC BY-SA 4.0)]

  如果有一种材料能与人类历史相混淆,那就是黏土。在《圣经》创世纪的第一章中提及,根据翻译,黏土、淤泥或土壤这几个词被用在如下语境中:“然后,上帝用地上的黏土造人,向他的鼻孔吹进了生命的气息,他就具有了生命。[1]

  毋庸置疑的是,黏土是促成艺术诞生的材料之一:在Tuc d’Audoubert(Ariège)史前洞穴中的野牛就是用湿黏土制成的。在1912年Begouën[2]发现的洞穴中,在没有烧制的情况下,这些模型能保持湿润达15000年(马格德林时期)。100%的相对湿度条件有利于这种保存(存在一些裂缝)[3](图1,[4])。

  在公元前3000多年的乌尔和苏美尔时期,美索不达米亚的文字也通过黏土发展起来[5]。由誊写人用楔形文字刻制的泥板是人类历史上最早的文字痕迹。特别是公元前2000多年,《吉尔伽美什史诗》被记载在12块泥板上,讲述了乌鲁克国王的故事(图2,泥板XI,洪水)。

环境百科全书-黏土-吉尔伽美什史诗
图2. 《吉尔伽美什史诗》, 泥板XI (公元前2000-1500年)
[图片来源:大英博物馆 (CC0)]

  用黏土烧制陶器和炊具可以追溯到新石器时代的亚洲和新月沃土地区。在所有人类聚居区,对黏土与水的混合、脱水、无开裂收缩以及烧制的控制一直伴随着人类的发展。烧制而成的黏土的耐久性,得以让考古学家通过多种文明的陶器碎片来解读历史。

  黏土也是一种奇妙的产品,自人类诞生之初,就被用于药典和化妆品中:例如,亚马逊印第安人的人体彩绘,用黏土制成的美容面具,如有机商店的绿石泥和温泉疗养地的泥浴。更常见的是,“索米耶尔之土”被用作天然去污剂或止泻药“思密达®”的基本成分。黏土也被用于制作牙膏、造纸业以及涂料填料。黏土普遍存在于我们的环境中,长期以来一直被广泛使用。

环境百科全书-黏土-因干旱而被宣告为自然灾害状态的行政区地图
图3. 因干旱宣布为自然灾害的行政区地图 (2018年1月23日),参见参考文献[7]
[图片来源: © BRGM]
图片3文字翻译:Mouvements de terrain différentiels consécutifs à la sécheresse et à la réhydratation des sols(土壤干旱和复水引起的不同地层活动);Nombre d’arrêtés de reconnaissance de l’état de catastrophe naturelle par commune au 23 janvier 2018(截至2018年1月23日,各城市发布的自然灾害状况的指令数)

  最后,黏土是一种建筑材料,也许多建筑物的支撑材料。土制建筑,无论是土坯、柴泥或泥砖,在世界各地都很普遍。一些重要的建筑,如伊拉克的金字神塔,就使用了芦苇秸秆加固(参见“土壤加固:必不可少的技术”)。但是作为建筑的支撑,黏土也会带来很多问题。根据气候或水力条件的不同,其体积会因吸收水分或在干燥过程中收缩而发生变化:称之为干缩湿胀。在法国,自2003年以来的旱灾对独栋住宅和其他建筑造成了巨大的破坏:超过8500个城市已被认定处于自然灾害状态,这使得业主有机会通过保险获得赔偿。这些损害既不引人注目,也不是“媒体炒作”,它们不会对任何人造成事故,只会造成建筑物安全受损的重大裂缝。过去几年的总成本十分高昂:1990年至2013年[6]期间的总成本约为85亿欧元。图3地图发布了2.3万多条自然灾害指令的相关城市[7]。目前的全球变暖不会改善这种影响:根据截止到2100年的气候变化模型,2020-2100年期间,消除湿胀的成本可能在500亿到1000亿欧元之间。

2. 一种天然的纳米材料

环境百科全书-黏土-硅铝
图4. 上方(a):硅层;下方(b):铝层
[图片来源:Philippe REIFFSTECK]
图片4文字翻译:atome d’oxygène(氧原子);atome de silicium(硅原子);hydroxyle(羟基);atome d’aluminium(铝原子);Figure 4a:Couche de silicium(图4a:硅层);Figure 4b:Couche d’alumine(图4b:铝氧层)

  黏土来源于硅质岩(特别是花岗岩)的物化蚀变。在受气候因子影响而分解的过程中,这些岩石会产生不同种类非常细小的黏土颗粒。在沉积之前,这些极细黏粒会被被冲刷和随之运移。这些黏土由层状排列、片状堆叠的硅(Si)、铝(Al)和羟基(OH)组成。在图4a中,SiO4四面体组装在一个梯形层中。八面体是由一个铝原子被六个羟基(OH)包围构成,并以矩形的层状形式存在(图4b)[8]

  两个或三个这样的基本单元构成一个单位晶层(图5)。高岭石(用于制作陶瓷)由硅片和铝片叠加而成,而蒙脱石是两个硅片夹一个铝片,再相互叠加而成。

  不同的阳离子替代也常会发生,从而产生了不同的黏土矿物。

环境百科全书-黏土-高岭石、蒙脱石
图5. 上方(a):高岭石;下方(b):蒙脱石
[图片来源:Philippe REIFFSTECK]
图片5文字翻译:Figure 5a:Feuillet de kaolinite [10](图5a:高岭石片[10]);n couches de H2O et cations échangeables(nH2O和可交换阳离子);Figure 5b: Montmorillonite [10]:(图5b:蒙脱石[10])

  因此,镁离子(Mg2+)、钾离子(K+)、铁离子(Fe2+)可以根据风化条件或在粘土颗粒的沉积运输过程中取代铝离子(Al3+),形成蒙脱石等黏土矿物。

  这些纳米级的晶层(10Å=1nm=10-9m)堆积形成黏土团聚体,黏土结构则以面-面或边-面键结合,可以呈现分散或聚集状态。这种堆积可由1到100个单位晶层组成。根据黏土性质的不同,在其晶层表面和晶层之间,可以通过电化学作用吸附水分子。对于层间键合较弱的蒙脱石来说尤其如此:这些电化学特性使得水主导黏土的特性,特别是在收缩和膨胀方面:水分子的吸附导致层间距加大和膨胀。

  水和黏土间的这种相互作用源于黏粒的比表面:如果将一克[9]蒙脱石的所有单位晶层表面展开,将得到600平方米的面积(高岭石则为50平方米)。

  黏土的含水量定义为:在105℃下干燥后,水质量与黏土质量的比值。它的变化范围从干燥粉末的0%到蒙脱石的超过300%或500%不等。墨西哥城的黏土沉积物的含水量超过300%(从150%到600%不等)[10]

  黏土的稠度因含水量的不同而不同,这就引出了“状态极限”或阿特伯格极限[11]的定义:液限和塑限。它们取决于矿物学性质,并在岩土工程中用于表征黏土。在液限以上,黏土表现出高黏度液体的特性(参见“物质是如何形变的——流体和固体”),而在塑限以下,黏土无法在不开裂的情况下成型。这些含水量的变化伴随着体积的变化。

  天然冲积土由砂粒、粉粒和黏粒的混合物组成。土壤黏粒含量被定义为小于0.002毫米粒径颗粒的重量百分比。

3. 黏土和渗透性

  黏土和黏土材料在土木工程中被广泛应用。黏土最有趣的特性之一是其低渗透性,比砂土低100万倍(参见“土壤中的扩散和渗透”(https://www.encyclopedie-environnement.org/en/zoom/diffusion-and-percolation-in-soils/))。废物储存中心采用夯实的黏土层作为密封层,将沉积物与外界环境隔离开来。一些产品将一厘米厚的膨润土层[13]与土工膜相结合。另一个应用则用于水坝和堤坝的建设。大型回填坝(如Serre-Ponçon和Grand Maison;参见“工程师眼中的土”)由不同的区域组成,且其密封性能由压实的黏土芯或含有充足黏粒的材料提供。堤坝、小型农业水坝、山坡水库和其他水库通常用夯实的黏土筑堤。

  在法国东部,核废料的储存计划中采用了厚厚的黏土层:这是一种高度致密的黏土,超过500米深,其不透水性将确保放射性元素的封存[13]

4. 固结和沉降

环境百科全书-黏土-葡萄榨汁
图6. 葡萄榨汁:在这种情况下,液体呈放射状压出:这称为放射状压实。
[图片来源:©Etienne Flavigny]

  许多城市和大都市在山谷、河口、湖滨或海滨地区发展起来。这些地区的地基是由冲积物、砂浆、黏土和泥浆组成的。这些物质通常含水量较高,并在地质时代期间逐层沉积的沉积层重压下发生固结。这种固结是指在上层施加的应力作用下,孔隙水被排出(参见“物质是如何形变的——流体和固体”)。

  当对建筑物表面进行施工时,会增加额外的压力,进而在建筑物结构的尺度上导致回填区域或城市区域的附加沉降。这个过程可以类比为果汁机(图6),其中果汁在螺杆对托盘施加的压力作用下[14]被挤压出来。

  由于黏土的低渗透性,沉降的过程从几天到几个世纪不等。如下几个案例很有名。墨西哥城大教堂建于1560年,覆盖了一些阿兹特克神庙的遗址,这些神庙为了建造大教堂而被拆除。它的沉降达2.5 m以上,东西塔之间的沉降差[15]为1.25 m。多项保护工程已经开展,包括地下挖掘工程,这些工程涉及从井中进行挖掘,在沉降较少的一侧创建一个沉降(图7)。

环境百科全书-黏土-墨西哥城大教堂景色
图7. 墨西哥城大教堂景色[21]
[图片来源:Arian Zwegers,(CC BY 2.0),通过Flickr]
环境百科全书-黏土-大阪机场站台
图8. 大阪机场站台 [24]
[图片来源:Thorfinn Stainforth (CC BY-SA 3.0),通过 Wikimedia commons]

  这项技术也成功地被用于减少比萨斜塔的差异沉降:Burland等人[16]因而“复原”了其倾斜度,使其恢复到了300年前的数值。

  目前的一个实例是大阪机场的停机坪[17](关西国际机场)。这是一座1.25×4公里的人工岛,建在水深18米处。预期沉降约为11米,允许将完成高度设定在海平面以上4米。然而观测到的沉降强度超出预期(约为14.3米),因此需要进行重大工程,提高周边的防波墙,并对建筑物进行修复。

  在大城市,导致地基土壤压实的另一个原因是地下水位的降低:由于用水需求,需要将水泵入地下。这导致了沉降层水平的降低。曾经受到阿基米德力浮力作用的土层不再受到此作用的影响,其表观重量增加。这造成了超载,从而在整个区域引发沉降。于是我们谈论到场地的下沉问题。这种现象对曼谷[18]、上海和威尼斯的影响尤其明显。这种下沉现象加上海平面上升使得这些大都市地区更易遭受洪水的侵袭。

  在岩土工程中,评估建筑物沉降是项目中得重要部分:建筑物会沉降多少,需要多长时间才能达到稳定状态?

5. 黏土的抗压性

环境百科全书-黏土-法国的地震区划
图9. 法国的地震区划。参见参考文献[20]
[图片来源:BRGM]
图片5文字翻译:Zonage sismique de la France(法国地震区划图);en vigueur depuis le 1er mai 2011(自2011年5月1日起生效);(art. D. 563-8-1 du code de r’environnement)(《环境守则》第563-8-1条);
Zones de sismicite(地震带);très faible(非常弱);faible(弱);modérée(中等);moyenne(中强);forte(强)

  岩土工程的另一方面是避免事故。要做到这一点,我们必须了解黏土的抗压性。这些材料具有粘聚力和摩擦角(参见“物质是如何形变的——流体和固体”)。其粘聚力类似于基本晶层之间的一种粘合现象,取决于黏土沉积物的含水量和历史;而摩擦角则与矿物学有关。这两个参数被用于建筑物结构基础、大坝、堤坝和基坑的稳定性计算中。当所施载荷超过黏土强度时,就会发生断裂。这种断裂可能在短期内发生,尤其是在建筑结束时,也可能在很长时间后发生。滑坡便是一个实例,其中黏土的抗压力是控制自然或人为斜坡稳定性的重要参数 (参见“滑坡”)。在质量低劣或强度不足的黏土上建造房屋,促进了土壤改良技术的发展(参见“土壤加固:必不可少的技术”),以增加抗力并减少沉降。

  对于地下土层含有黏土冲积层的城市而言,地震可能带来相当大的诱发效应:我们称之为“场地效应”[19]地震波会被困在黏土层中并被放大。1985年,发生在墨西哥城的毁灭性地震就是一个实例:虽然这次地震的震中距离较远,但地震应力在墨西哥城中部被放大了,这是因为墨西哥城建在含有极高含水量和低粘聚力的黏土沉积物上。对这一现象的关注已纳入法国的地震区划中;日内瓦-安纳西-格勒诺布尔-巴伦西亚阿尔卑斯海沟地区位于大都市中最强的4号地震活动带[20](图9):极厚的细颗粒黏土冲积层的存在解释了这种分区。

6. 需记忆的要点

  • 黏土在自然界中随处可见。
  • 黏土的研究是多科学技术的交叉。
  • 黏土的性质源于它们的层状结构。
  • 黏土存在于冲积土的底层中,给土木工程结构带来了困难。

 


参考资料及说明

封面照片:比萨斜塔[Source: Kiste11 (CC BY-SA 4.0)]

[1] 《圣经》,1965年;耶路撒冷圣经学院,Desclée de Brouwer出版社。

[2] Bégouën  H. (1912) Les statues d’argile préhistoriques de la caverne du Tuc d’Audoubert (Ariège), Comptes rendus des séances de l’Académie des Inscriptions et Belles-Lettres, Volume 56, Numéro 7, pp. 532-538, http://www.persee.fr/doc/crai_00650536_1912_num_56_7_73103

[3] 相对湿度是空气中水蒸气的实际含量与同温度下的饱和湿度之比。相对湿度的范围从完全干燥的空气的0%到形成水滴的高于100%。

[4] Leroi-Gourhan A. (1984) L’Art des cavernes : Atlas des grottes ornées paléolithiques françaises.

[5] Kramer S.N., 2017, L’histoire commence à Sumer, Flammarion.

[6] Gourdier S., Plat E. (2018) Impactdu changement climatique sur la sinistralité due au retrait-gonflement des argiles, Journées Nationales de Géotechnique et de Géologie de l’Ingénieur, ENPC, Marne-la-Vallée, https://hal-brgm.archives-ouvertes.fr/hal-01768395

[7] http://infoterre.brgm.fr/page/alea-retrait-gonflement.

[8] Reiffsteck P., Zerhouni M., Averlan J-L ( 2018), Essais de laboratoire pour la mécanique des sols et la géotechnique, Presses de l’ENPC, Paris.

[9] 一克大约相当于一小匙绿色黏土的质量。

[10] Ovando E. (2011), Some geotechnical properties to characterize Mexico City Clay, http://geoserver.ing.puc.cl/info/conferences/PanAm2011/panam2011/pdfs/GEO11Paper889.pdf

[11] https://en.wikipedia.org/wiki/Albert_Atterberg

[12] 膨润土是一种蒙脱土,被广泛应用于土木工程或石油工程的钻探。

[13] www.andra.fr

[14] 这里的约束条件是施加的力除以榨汁机的截面积。

[15] 不均匀沉降指建筑物的两个地基之间存在沉降差,从而导致开裂。

[16] Burland, J.B., Jamiolkowski, M., Viggiani C. (1998), Stabilizing the leaning tower of Pisa, Bulletin of Engineering Geology and Environnement, n°57 pp.91-99.

[17] Puzrin, A.M., Alonso E.E., Pinyol N.M. (2010), Geomechanics of failures, Springer.

[18] Phien-wej N., Giao P.H., Nutalaya P. (2006), Land subsidence in Bangkok, Thaïland, In Engineering Geology, Volume 82, Issue 4, Pages 187-201, ISSN 0013-7952, https://doi.org/10.1016/j.enggeo.2005.10.004.(http://www.sciencedirect.com/science/article/pii/S0013795205002693

[19] Bard, P.-Y. (2002), Les effets de site et la cuvette grenobloise, Risques-Infos n°13, IRMA Grenoble, Mai 2002

[20] Zonage sismique de la France. http://www.planseisme.fr/Zonage-sismique-de-la-France.html


环境百科全书由环境和能源百科全书协会出版 (www.a3e.fr),该协会与格勒诺布尔阿尔卑斯大学和格勒诺布尔INP有合同关系,并由法国科学院赞助。

引用这篇文章: FLAVIGNY Etienne (2024年3月4日), 黏土:令人惊讶的天然纳米材料, 环境百科全书,咨询于 2024年12月21日 [在线ISSN 2555-0950]网址: https://www.encyclopedie-environnement.org/zh/sol-zh/clay-a-natural-and-surprising-nanomaterial/.

环境百科全书中的文章是根据知识共享BY-NC-SA许可条款提供的,该许可授权复制的条件是:引用来源,不作商业使用,共享相同的初始条件,并且在每次重复使用或分发时复制知识共享BY-NC-SA许可声明。

Clay: a natural and surprising nanomaterial

Clays are a family of materials that are omnipresent in our daily lives and in our environment. Dry, they seem as solid as rocks, muddy, they flow like oils. They are now used in the construction of very large structures and often form the subsoil of urban areas. How do civil engineering technicians manage to overcome the difficulties they pose?

1. A universal material

bisons grotte tuc d'audoubert
Figure 1. Bisons from the cave of the Tuc d’Audoubert [4] [Source: Leroi-Gourhan Arlette, 1984: L’Art des cavernes : Atlas des grottes ornées paléolithiques françaises (CC BY-SA 4.0)]
If there is one material that is confused with the history of humanity, it is clay. It is mentioned in chapter 1 of the Book of Genesis in the Bible. According to the translations, the words clay, clay, silt or earth are used: “Then the Lord God shaped man with the clay of the ground, breathed into his nostrils a breath of life and man became a living being[1].

Clay is undoubtedly one of the materials that contributed to the birth of art: the bison in the prehistoric cave of the Tuc d’Audoubert (Ariège) were made from wet clay. Without any firing, the models have been able to keep wet for 15,000 years (Magdalenian period) in the cave discovered by Begouën [2] in 1912. The relative humidity of 100% [3] allowed this conservation (with some cracks) (Figure 1, [4]).

It is also through clay that writing developed in Mesopotamia at the time of Ur and Sumer more than 3000 years BC [5]. The clay tablets, engraved with styli by the scribes in cuneiform writing, are the first written traces of the history of humanity. In particular, the epic of Gilgamesh tells the story of the king of Uruk in 12 clay tablets written more than 2000 years before Christ (Figure 2, Tablet XI, The Flood).

Figure 2. Epic of Gilgamesh, Tablet XI (2000-1500 BC) [Source: British Museum (CC0)]
The firing of clay for pottery and cooking utensils dates back to the Neolithic and appeared in Asia and the Fertile Crescent. The control of the mixture of clay and water, drying, shrinkage without cracking and firing has accompanied the development of humanity in all settlement areas. And the resistance of the fired clay gives archaeologists a reading of history through the shards of pottery of various civilizations.

Clay is also a wonderful product that has been used since the dawn of humanity in pharmacopoeia and cosmetics: for example, the body paintings of the Amazonian Indians, beauty masks with clay, such as the green clay of organic shops or the mud baths of spa resorts. More prosaic are the “terre de Sommières” used as a natural stain remover or the basic component of the anti-diarrheal drug “Smecta®”. Clay is also used in toothpaste, in the paper industry, as a filler in paints. Clay is everywhere in our environment and has always been used extensively.

Figure 3. Map of communes that have been declared as natural disasters due to drought (January 23, 2018), see ref. [7] [Source: © BRGM].
Finally, clay is a building material and is the support for many buildings. Earthen constructions, be they adobe, cob or mud bricks, are widespread throughout the world and at all latitudes. Important constructions such as the ziggurats of Iraq, included reinforcements in reed straw (see Soil reinforcement: techniques that have become essential). But as a construction support, clay poses many problems. Depending on climatic or hydraulic conditions, its volume can vary by absorbing water or by shrinking during drying: this is called shrinkage and swelling. In France, drought episodes since 2003 have caused enormous damage to single-family homes and other buildings: more than 8,500 municipalities have been recognised as being in a state of natural disaster, opening up the possibility for owners to receive compensation through insurance. These damages are neither spectacular nor “media”, they do not cause accidents to anyone but only major cracks compromising the safety of the building. The overall cost over the last few years is significant: it is in the order of 8.5 billion euros over the period 1990-2013 [6]. The map in Figure 3 shows the municipalities concerned where more than 23,000 natural disaster orders have been published [7]. And current global warming will not improve this effect: according to climate change models by 2100, the cost of withdrawal-swelling could be between 50 and 100 billion euros for the period 2020-2100.

2. A natural nanomaterial

couche silicium - couche alumine
Figure 4. Top (a) : Silicium layer ; Below (b) Alumine layer [Source: Philippe REIFFSTECK].
The clays come from the physicochemical alteration of siliceous rocks, especially granitic rocks. During their decomposition by climatic agents, these rocks produce very fine particles of clays of different kinds. These can then be washed and transported before being deposited by sedimentation. The clays are made of Si silicon, aluminium Al and OH hydroxyl organized in layers that are stacked in sheets. In Figure 4a, the SiO4 tetrahedrons are assembled in a layer represented by a trapezoid. Octahedrons are formed by an aluminium atom surrounded by six OH hydroxyl atoms and are associated in a layer symbolized by a rectangle (Figure 4b) [8].

Two or three of these base units form an elementary sheet (Figure 5). Kaolin (used in porcelain) is the stacking of an Si layer and an Al layer while smectites have an Al layer between two Si layers.

Different cation substitutions can also occur, leading to different clay minerals.

feuillet kaolinite - montmorillonite
Figure 5. Top (a) : Kaolinite ; Below (b) : Montmorillonite  [Source: Philippe REIFFSTECK]
Thus Mg+++, K+, Fe++ cations can replace Al+++ cations depending on weathering conditions or during sedimentary transport of clay particles and form clay minerals such as montmorillonite.

These sheets, of nanometric size (10 Å = 1nm = 10-9m), are stacked to give clay aggregates and the clay structure is either dispersed or flocculated with face-face or edge-face bonds. Stacks can consist of 1 to 100 elementary sheets. On the surface of the sheets and between the sheets, water particles can be adsorbed by electrochemical effect, depending on the nature of the clays. This is particularly the case for smectites where the bonds between sheets are weaker: these electrochemical properties generate the major role of water in the behaviour of clays, particularly shrinkage and swelling: water adsorption leads to a spacing of the sheets and swelling.

This interaction between water and clay finds its source in the specific surface of the clay particles: if we deployed the surface of all the elementary leaves of one gram [9] of montmorillonite, we would obtain 600 m2 (and 50 m2 for a kaolinite) !

The water content of a clay is defined as follows: it is the ratio between the water mass and the clay mass after drying at 105°C. It varies from 0% for a dry powder to values of more than 300 or 500% for montmorillonites. The clay deposits on which Mexico City is built [10] have a water content of more than 300% (varying from 150 to 600%).

Depending on its water content, a clay’s consistency varies, which leads to the definition of “state limits” or Atterberg limits [11] : liquidity limit and plasticity limit. They depend on the mineralogical nature and are used to characterize clays in geotechnical engineering. Above the liquidity limit, clay behaves like a highly viscous liquid (see How matter deforms: fluids and solids) while below the plasticity limit, clay cannot be shaped without cracking. These variations in water content are accompanied by variations in volume.

Natural alluvial soils consist of a mixture of sand, silt and clay particles. The clay content of a soil is defined as the percentage by weight of particles less than 0.002 mm.

3. Clay and permeability

Clay and clay materials are widely used in civil engineering works. One of the most interesting properties of clays is their low permeability, up to one million times lower than that of sands (see Diffusion and percolation in soils)). Waste storage centres use compacted clay layers to provide a seal that isolates deposits from the outside environment. Some products associate a centimetre layer of bentonite [13] with a geomembrane. Another application is for dams and dikes. Large backfill dams (e. g. Serre-Ponçon and Grand’Maison; see Soils for engineer) are made up of different zones and the sealing function is provided by a compacted clay core or a material containing sufficient clay particles. Dykes, small agricultural dams, hillside water reservoirs and other reservoirs are often made of compacted clay earthen embankments.

The storage of nuclear waste is planned in a thick layer of clay in eastern France: it is a highly consolidated clay more than 500 metres deep, whose impermeability will ensure the containment of radioelements [13].

4. Consolidation and settlement

Figure 6. Grape press: in this case, the fluid is expelled radially: this is called radial consolidation. [Source: © Etienne Flavigny]
Many cities and megacities have developed in valleys, estuaries, lakeside or seafront areas. The subsoil of these areas is made up of alluvial materials, silts, clays and mud. These materials are often of high water content and have consolidated under the weight of sedimentary layers deposited successively during the geological eras. This consolidation corresponds to the expulsion of pore water under the effect of stress (see How matter deforms: fluids and solids) applied by the upper layers.

Any surface construction adds additional stress and then causes an additional settling, on the scale of the building constructed, of a backfill or an urban area. An analogy that can be made of this process is that of a fruit press (Figure 6) where the juice is expelled under the effect of the stress applied [14] by the screw acting on the tray.

Due to the low permeability of clays, settlement develops over time ranging from a few days to several centuries. Several examples are famous. Mexico City Cathedral was built in 1560 and covers some of the Aztec temples demolished for its construction. The settlements reach more than 2.5 m with differential settlements [15] of 1.25 m between the West and East towers. Several preservation works have been undertaken, including those of under-excavation: they consist in excavating from wells to create a settlement on the side where the settlement is less (Figure 7)

cathedrale mexico
Figure 7. View of Mexico City Cathedral [21] [Source : Arian Zwegers, (CC BY 2.0), via Flickr]
This technique has also been successfully used to reduce the differential settlement of the Leaning Tower of Pisa : Burland et al. [16]  have thus been able to “rejuvenate” the inclination: it has returned to the value it had 300 years ago.

Figure 8. Osaka Airport Platform [24] [Source Thorfinn Stainforth (CC BY-SA 3.0), via Wikimedia commons]
A current example is the Osaka Airport Platform [17] (Kansai International Airport). This is an artificial island 1.25 x 4 km built at a water depth of 18 m. The expected settlements were about 11 m and allowed a finished level of 4 m above sea level. The observed settlements were stronger than expected (about 14.3 m) and led to major work to raise the peripheral wave protection walls and also to work on the buildings.

Another cause of subsoil compaction in large metropolitan areas is the lowering of groundwater tables: water needs require pumping into the subsoil. The induced effect is to lower the level of the slicks. The soil layers that were subjected to Archimedes’ thrust are no longer subjected to Archimedes’ thrust and their apparent weight increases. This creates an overload and therefore a settlement developing over the entire area. We then talk about the subsidence of the site. This phenomenon affects Bangkok [18], Shanghai and Venice in particular. This decline is in addition to sea-level rise, making these metropolitan areas vulnerable to flooding.

In geotechnical engineering, the evaluation of construction settlements is an important part of the project: by how much will the building settle and in how long will it be reached?

5. The resistance of clays

zones sismiques france - zones risque seismes france
Figure 9. Seismic zoning of France. See ref. [20] [Source BRGM]
Another aspect of geotechnical engineering is to protect against failure. To do this, it is necessary to know the resistance of the clays. These are materials that have a cohesion and an angle of friction (see How matter deforms: fluids and solids) Their cohesion, a phenomenon similar to a kind of glue between the elementary sheets, depends on the water content and history of the clayey deposits, while the angle of friction is related to mineralogy. These two parameters are used in the stability calculations of the foundations of structures, dams, dikes and excavations. When the applied loads become stronger than the strength of the clay, there is a rupture. This rupture can occur in the short term, especially at the end of construction, or in the long term. Landslides provide an example where clay resistance is the important parameter controlling the stability of a slope, whether natural or anthropogenic (see Landslides).Building on clay soils of poor quality or insufficient strength has led to the development of soil improvement techniques (see Soil reinforcement: techniques that have become essential). to increase resistance and also reduce settling.

For cities with clayey alluvial layers in their subsoil, earthquakes can have considerable induced effects: we speak of a “site effect” [19]. Seismic waves can be trapped in clay layers and are amplified. An example is the destructive earthquake that struck Mexico City in 1985: although the epicentre of this earthquake is distant, seismic stresses have been amplified in central Mexico City, a city built on clayey deposits with very high water content and low cohesion. The consideration of this phenomenon has been integrated into the seismic zoning of France; the Geneva-Annecy-Grenoble-Valencia Alpine Trench area is in Seismicity Zone 4, the strongest in the metropolitan territory [20] (Figure 9): the presence of significant thicknesses of fine clayey alluvium explains this zoning.

6. Messages to remember

  • Clays are found everywhere in nature.
  • They are at the crossroads of many sciences and technologies.
  • Their properties are derived from their sheet structure.
  • Present in the subsoil of alluvial sites, their behaviour generates difficulties for civil engineering structures

 


Notes and references

Cover image. Leaning Tower of Pisa. [Source: Kiste11 (CC BY-SA 4.0)]

[1] The Holy Bible, 1965; Jerusalem Bible School, Desclée de Brouwer.

[2] Bégouën  H. (1912) Les statues d’argile préhistoriques de la caverne du Tuc d’Audoubert (Ariège), Comptes rendus des séances de l’Académie des Inscriptions et Belles-Lettres, Volume 56, Numéro 7, pp. 532-538, http://www.persee.fr/doc/crai_00650536_1912_num_56_7_73103

[3] Relative humidity is the value of the ratio between the water vapour content of the air and its maximum capacity to contain it. It varies from 0% for completely dry air and above 100% water forms into droplets.

[4] Leroi-Gourhan A. (1984) L’Art des cavernes : Atlas des grottes ornées paléolithiques françaises.

[5] Kramer S.N., 2017, L’histoire commence à Sumer, Flammarion.

[6] Gourdier S., Plat E. (2018) Impactdu changement climatique sur la sinistralité due au retrait-gonflement des argiles, Journées Nationales de Géotechnique et de Géologie de l’Ingénieur, ENPC, Marne-la-Vallée, https://hal-brgm.archives-ouvertes.fr/hal-01768395

[7] http://infoterre.brgm.fr/page/alea-retrait-gonflement.

[8] Reiffsteck P., Zerhouni M., Averlan J-L ( 2018), Essais de laboratoire pour la mécanique des sols et la géotechnique, Presses de l’ENPC, Paris.

[9] Un gramme correspond environ la masse contenue dans une petite cuillère d’argile verte.

[10]  Ovando E.  (2011),  Some geotechnical properties to characterize Mexico City Clay,  http://geoserver.ing.puc.cl/info/conferences/PanAm2011/panam2011/pdfs/GEO11Paper889.pdf

[11] https://en.wikipedia.org/wiki/Albert_Atterberg

[12] Bentonite is a montmorillonite widely used in civil engineering or petroleum engineering for drilling.

[13]  www.andra.fr

[14] The constraint here is the applied force divided by the section of the press.

[15] Le tassement différentiel est la différence de tassement entre deux fondations d’un bâtiment et entraîne des fissurations.

[16] Burland, J.B., Jamiolkowski, M., Viggiani C. (1998), Stabilizing the leaning tower of Pisa, Bulletin of Engineering Geology and Environnement, n°57 pp.91-99.

[17] Puzrin, A.M., Alonso E.E., Pinyol N.M. (2010), Geomechanics of failures, Springer.

[18] Phien-wej N., Giao P.H., Nutalaya P. (2006), Land subsidence in Bangkok, Thaïland, In Engineering Geology, Volume 82, Issue 4, Pages 187-201, ISSN 0013-7952, https://doi.org/10.1016/j.enggeo.2005.10.004.(http://www.sciencedirect.com/science/article/pii/S0013795205002693

[19] Bard, P.-Y. (2002), Les effets de site et la cuvette grenobloise, Risques-Infos n°13, IRMA Grenoble, Mai 2002

[20] Zonage sismique de la France. http://www.planseisme.fr/Zonage-sismique-de-la-France.html

 


环境百科全书由环境和能源百科全书协会出版 (www.a3e.fr),该协会与格勒诺布尔阿尔卑斯大学和格勒诺布尔INP有合同关系,并由法国科学院赞助。

引用这篇文章: FLAVIGNY Etienne (2019年8月20日), Clay: a natural and surprising nanomaterial, 环境百科全书,咨询于 2024年12月21日 [在线ISSN 2555-0950]网址: https://www.encyclopedie-environnement.org/en/soil/clay-a-natural-and-surprising-nanomaterial/.

环境百科全书中的文章是根据知识共享BY-NC-SA许可条款提供的,该许可授权复制的条件是:引用来源,不作商业使用,共享相同的初始条件,并且在每次重复使用或分发时复制知识共享BY-NC-SA许可声明。