我们是否面临水资源短缺的风险?

penurie eau - water shortage

  地球上的水基本上都是咸的,然而正是海洋表层的海水通过蒸发、凝结和降水,推动了地球的水循环,其热动力来源便是太阳辐射。这种水循环为陆地提供水,其中包括在河流和地下流动的“蓝水”和雨后储存在土壤中随后被植被吸收和蒸腾的“绿水”。这些水流几乎完全被陆地和海岸自然生态系统所利用,因为生命已经四处发展,达到了可利用资源的承载极限。在全球范围内,人类分配到的水资源依然是适中的:7%的蓝水和9%的绿水,但是人类的空间分布与水资源的空间分布并不一致:21.5%的人口生活在只有人类2%蓝水资源的大草原和干旱地区。此外,由于人口增长和饮食习惯的变化,对水的需求也在增加,而水资源还正受到气候变化的影响。那么我们该如何解决2050年乃至2100年由水的供需不平衡所带来的挑战,同时尽可能地避免水短缺及由此造成的饥荒、血腥冲突和大量移民?

1. 我们有多少水?

环境百科全书-水资源短缺-菲莱探测器
图1. 罗塞塔探测器正飞跃67P/丘留莫夫-格拉西缅科(Churyumov-Gerasimenko)彗星,该彗星常被称作乔里(Choury)。图像来自影片《罗塞塔彗星任务》。
[来源:DLR, CC-BY 3.0 (http://creativecommons.org/licenses/by/3.0/de/deed.en)]通过维基共享

  地球最初形成的时候是无水的或少水的,水都聚集在离太阳更远的类木行星和彗星带(奥尔特云和柯伊伯带),地球上大部分水是在地球形成后的几亿年内才出现的。按比例来说,地球是陆地行星(水星、金星、地球和火星)中水含量最高的。地球水的彗星起源学说最初受到支持,现在却受到严重的质疑,特别是在欧洲太空总署的罗塞塔任务之后。该任务在2014年11月12日发射了菲莱探测器(见图1)登陆67P / 丘留莫夫-格拉西缅科彗星并特别测量其冰中的含量:这种氢的同位素(即氘)的含量是地球上的两倍;因此,这种类型的彗星(无论如何)不可能是地球上水的起源,因此人们的目光转向了来自岩质或者铁质小行星的撞击,这些小行星中也含有少量的水。

  地球上97%的水都是咸水,它们在太阳辐射的作用下蒸发,经过凝结和降水,推动了地球水循环。通过这种方式,每年有113,000 立方千米的水(日内瓦湖容量的1270)被带到陆地,它们被分为降水后流入河流和下渗到含水层的蓝水(32%)、存储在土壤而后被根系吸收并由植被蒸腾的绿水(65%)以及3%的冰川融水(Hoekstra and Mekonnen, 2012)。 我们的水资源本质上来源于地球水循环的这些输入。

  全球变暖(请阅读: 气候的机制 )将加速这一循环,平均来看,增加地球上的降水同时将气候带移向两极,从而导致地中海纬度地区的干旱化:这些地区的可耕种面积将会减少1.1亿公顷,但同时在更北纬度地区(加拿大、西伯利亚)的可耕种面积将会因气候变暖而增加1.6亿公顷。预计极端天气(洪水、干旱)的频率也会增加。例如在法国,预计到本世纪末降水将会减少10%至20%,特别是在夏季减少更多。

2. 我们使用的水

  目前,人类消耗了蓝水的7%,但开采的水量更高(13%),消耗的部分(主要是灌溉用水)通过蒸发并返回到大气中,而未使用的部分则以液态水的形式下渗和返回至地下水和河流中。我们使用9%的绿水用于农业,其余绿水则进入自然生态系统(森林、草原、湿地)。我们还以大约每年100立方千米的速度提取少量的化石水,这些水主要储藏在一些国家(印度、美国、中国、巴基斯坦、伊朗、墨西哥)的地下蓄水层中(Döll et al., 2014)。但这种情况是不可持续的,这些含水层的储量将在几十年内耗尽,这就需要我们从喜马拉雅大河流(长江、恒河等)或其他水资源丰富的地方通过运河调水。由于阿尔卑斯山、喜马拉雅山、落基山脉等地的一些河流过热高山冰川融加剧,尤其是安第斯山脉,由融水汇聚的河流将在不到30年的时间就会干涸,而这些融水是拉巴斯和秘鲁太平洋沿岸城市的生活用水主要来源。

环境百科全书-水资源短缺-水循环生活用水示意图
图2. 地球水循环中的生活用水部分示意图。图中,抽取地下水来满足城市用水需求,污水处理后最终排入河流。
Captage:开采水,Adduction:供应,Traitement:处理,Reservoir:水塔或水库,Distribution:供水,Collecte:污水收集,Epuration:污水净化,Rejet:排放

  人均生活用水量(其定义见图2)的范围为每天20至500升,平均值为每天300升,或人均每年110立方米。在法国,人均生活用水量的估计值是150升/天。到2050年世界人口将增加到95亿(Gerland et al.,2014),2100年将增加到110亿,其中令人担忧的人口增长主要在非洲地区(2000年10亿,2050年25亿,2100年42亿……)。以人均250升/天计算,2050年地球所需的生活用水总量将为870 km3 /年,占降水量的0.8%、或蓝水的2.4%。因此,生活用水不存在量的问题,而是运输和水质的问题,因此也是供应和处理基础设施的问题。如果能及时建造这些基础设施,地球上的生活用水永远不会短缺。位于沙漠中心的纳米比亚首都温得和克市(35万名居民),30年来一直靠大坝和一条800公里长的管道供水,同时对处理后的污水进行再生回用,这些水被重新注入当地的地下含水层!

  工业用水方面,人均的使用量为每年1300m3左右。但这些水实际只消耗了10%; 其余的90%被排放到环境中,这些水如果不加以处理的话,环境中的水可能会被加热(冷却水)或被污染。

环境百科全书-水资源短缺-玉米灌溉系统
图3. 这是一个大规模的玉米灌溉系统的例子,它消耗大量的水。

  水资源主要消耗在农业用水(见图 3)上(Griffon,2006;Agrimonde,2010;Leridon 等,2011;Marsily(等),2006、2015a、2015b)。 如今我们每年需要上万立方千米的水来养活地球上的72 亿人:6,500 立方千米的绿水 15 亿公顷的雨养农业用地和 32 亿公顷的牧场上的。 此外,还需从河流和地下水中抽提 3,500立方千米的蓝水(实际利用其中的50%),用于浇灌2.8 亿公顷的灌溉用地。因此,养活人类最终需要 8,000 立方千米/年,即每人每年 1,150 升3(比生活用水多十倍)。 然而遗憾的是,在撒哈拉以南非洲和东南亚有 10 亿人仍然营养不良,他们生活在水量充沛的地区,而不是干旱地区; 这种情况是欠发达导致的(农业生产效率低下和产量不足、投入使用率极低、缺乏发展:水坝、灌溉区……),参见图 4。由于缺乏可耕种的土地或水,许多国家也无法生产足够他们需要的食物:他们的人口已经超出了该国当地资源能够养活人口的极限,同时饮食习惯也发生了变化;他们必须从粮食产量富余的国家(北美和南美、澳大利亚、泰国、法国)进口食物。现在,地球上生产的食物中有 30% 以上是从一个国家运输到另一个国家的,主要是通过航运的手段运输,它们被称为虚拟水,因为缺水国家不是通过进口水而是通过进口食物来解决粮食不足问题,而生产这些粮食需要水。

环境百科全书-水资源短缺-蓝水资源或需求划分的世界区域
图4. 2000年时世界范围内因资源(物理上)或经济发展原因长期缺乏蓝水资源的地区。橙色:资源型缺水;包括循环利用在内,超过75%的河流流量用来满足人类的需要。粉色:超过60%的河水被抽走利用。这些流域很快就会变红。紫色:节水不足。相对于使用量而言,这里的水资源是丰富的,只有不到25%的河流流量被抽走,但营养不良现象却十分严重,在设备设施投入方面缺乏相应的财政能力。蓝色:丰富的水资源,用水量不到河流流量的25%。值得注意的是,橙色区域由于有“虚拟”水进口,粮食短缺不是问题;而在紫色区域却有丰富的水资源。来源于IWMI(2007)。
Little or no water scarcity:很少或者没有水短缺,Approaching physical water scarcity:接近物理上缺水,Physical water scarcity:物理上缺水,Economic water scarcity:经济发展问题导致的缺水

  粮食进口国为支付这些粮食进口费用,需要出口能源或矿物原材料,从事工业或第三产业活动,发展旅游业,或者获得海外移民的汇款。一些国家出口高价值的农产品(咖啡、可可、棉花),然后进口食品。但因此进口国就会产生依赖性,一旦出现全球性粮食短缺,就会面临来自政治压力和价格压力的风险。由于缺乏可耕种的土地,目前对所有干旱地区(北非、中东)的国家和未来对整个亚洲而言都不可能实现粮食自主。我们看到像中国这样的国家,正在发展中国家购买重要的农田(特别是在非洲和南美),种植自己的作物,然后进口他们需要的粮食到他们的国家。因此约旦70%的粮食需要进口,而吉布提则超过90%。图4显示了根据蓝水资源或需求划分的世界区域。

3. 未来的水资源

  到2050年,按目前的饮食习惯,若要满足每个人的饮食需求,每年需要11,000 立方千米的水。这是可以实现的,前提是粮食短缺国家能够负担得起从粮食出口国购买他们的粮食,并且粮食出口国同意生产超出他们自己需要的粮食。但如果肉类消费增大,将需要13,000 立方千米/年的水量。肉类消费对水的需求有很大的影响:每生产1公斤由谷物饲养的牛肉需要13,000升水,这是生产1公斤小麦的13倍!

  这11,000到13,000 立方千米/年的用水量将用于雨养农业和灌溉农业:我们将不得不增加亩产量和各地的耕地面积,但是谁又能保证会有(只能通过土地开垦才能发展的)更大的雨养农业规模和(只有通过大坝建设才能提升的)更强的灌溉能力呢?修建水坝或开荒必然会造成有害的环境后果,但如果世界人口继续增长,我们难道不应该尝试以危害最小的方式养活他们吗?海水淡化的成本约为0.7欧元/升,耗电量为2 到4 千瓦时/ m3:这对于灌溉用水来说成本和电耗太高,大约是通常花费的10倍,但对于生活用水来说却是可以接受的。

环境百科全书-水资源短缺-沙漠
图5. 干旱土地,甚至包括植被稀少地区和沙漠的形成

  遗憾的是,我们似乎又要去了解整个世界大家庭了。在1998年,东南亚(中国和印度尼西亚)发生了严重干旱,致使他们从世界市场上大量购买谷物,世界粮食库存急剧减少,如果当时干旱持续下去,库存将会不足(Rojas et al. 2014; Lizumi et al. 2014)。然而,世界粮食库存已经从20年前的能够满足10个月的全球消费量降低至今天的仅能维持2个月全球消费量……这些年发生在季风地区的严重干旱与非常强烈的厄尔尼诺事件有关。根据南美洲教区记录汇编的统计数据(Orltieb, 2000),厄尔尼诺事件平均每世纪发生两次,例如19世纪观测到的厄尔尼诺现象发生在1876-1878年和1896-1900年,每次厄尔尼诺事件造成约3000万人死亡(Sen和Drèze, 1999年);在20世纪,它们分别发生在1940年和1998年。气候变化对厄尔尼诺现象在频率和强度上的影响目前受到广泛讨论。

  我们会对未来农业生产需求感到担忧。我们可以首先对比一下粮食浪费的情况,因为今天有大约30%的食物或在富裕国家被丢弃,或在贫穷国家因歉收或保存不当而损失;我们还可以对比饮食,因为根据国家的不同,土地所有者每年所需的水量从600 m3到2500 m3不等,动物产品(荤类食物)的消费是导致所需水量变化的主要因素:富裕国家消费的动物产品大约是营养需求的两倍,新兴国家总体上处于适当的水平,而贫穷国家平均来说则低于需求的三分之一。但要满足缺水国家的粮食需求,只有三种选择:通过建设巨大的人工渠道输送水,就像中国已经决定去做的(或者印度应该决定去做的)那样;以食物的形式转移虚拟水;或最终接受人口从缺水国家向富裕国家的迁移,这些人被血腥的冲突和饥饿骚乱赶出家园,最近的历史已经给出了残酷的例子(参见与本文相关的焦点)。我们今天面临的移民问题只是漫长历史的开始,这一问题将随着气候变化、人口增长和动物产品消费的增加而加剧……

 


参考资料及说明

ARIMOND (2010) Scenarios and challenges for feeding the world in 2050. Coordinated by S. PAILLARD, S. TREYER & B. DORIN. Editions Quae, Versailles, 295 p.

DIAMOND, J. (2006) Collapse. How societies decide on their disappearance or survival. Gallimard, Paris, 648 p. (Translated from the English, “Collapse”, Viking Penguin, 2005).

DÖLL, P., MÜLLER SCHMIED, H., SCHUH, C., PORTMAN, F.T., EICKER, A. (2014) Global-scale assessment of groundwater depletion and related groundwater abstractions: combining hydrological modeling with information from well observations and GRACE satellites. Water Resour Res. doi:10.1002/2014WR015595

GERLAND P., RAFTERY A., SEVCIKOVA H., LI N., GU D., SPOORENBERG T., ALKEMA L., FOSDICK B., CHUNN J., LALIC N., BAY G., BUETTNER T., HEILIG G. & WILMOTH J. (2014) World population stabilization unlikely this century. Science, 346 : 234-237 ; doi: 10.1126/science.1257469.

GLEICK, P.H. (2014) Water, Drought, Climate Change, and Conflict in Syria. Wea. Climate Soc., 6, 331-340; doi: http://dx.doi.org/10.1175/WCAS-D-13-00059.1.

GRIFFON M. (2006) Feeding the planet. Odile Jacob, Paris: 456 p.

HOEKSTRA, A., M. MEKONNEN (2012) The water footprint of humanity. Proceedings of the National Academy of Sciences of the USA. www.pnas.org/cgi/doi/10.1073/pnas.1109936109

IWMI (INTERNATIONAL WATER MANAGEMENT INSTITUTE) (2007) Water for Food, Water for Life: the Comprehensive Assessment of Water Management in Agriculture. D. Molton (ed.), Earthscan, London, UK, 645 p.

LERIDON, H., MARSILY G. de, coord. (2011) Demography, climate and global food supply. EDP Sciences – Report of the Académie des SciencesParis, 313 p. (and www.academie-sciences.fr)

LIZUMI, T., LUO, J., CHALLINOR, A., SAKURAI, G., YOKOZAWA, M., SAKUMA, H., BROWN, M., YAMAGATA, T. (2014) Impacts of El Niño southern oscillation on the global yields of major crops. Nat Commun 5:3712. doi:10.1038/ncomms4712

MARSILY, G. de (2006) Les Eaux Continentales. EDP Sciences, Report of the Académie des Sciences, Paris, 328 p. (and www.academie-sciences.fr)

MARSILY, G. de (2015a) Water, a coveted renewable resource and unequally distributed. Ann. Northern Geol. Soc. T. 22 (2nd series), December 2015.

MARSILY, G. de, ABARCA DEL RIO, R. (2015b) Water and Food in the 21st Century. Surveys in Geophysics, v.36, n°4, July 2015, DOI 10.1007/s10712-015-9335.

ORTLIEB, L. (2000) The documented historical period of El Niño events in Peru: an update of the Quinn record (16th to 19th centuries). In: DIAZ H.F. & MARKGRAF V. eds, El Niño and the southernoscillation. Multiscale variability and local and regional impacts. Cambridge University Press: 496 p.

ROJAS, O., LI, Y., CUMANI, R. (2014) Understanding the drought impact of El Niño on the global agricultural areas: an assessment using FAO’s Agricultural Stress Index (ASI), FAO, Climate, energy and tenure division (nRc) publications. ISBN: 978-92-5-108671-1, ISSN 2071-0992

SEN, A., DRÈZE, J. (1999) Omnibus. Oxford University Press, New Delhi (India): 945 p.

WILS, W., CARAEL, M., TONDEUR, G. (1986) Le kivu Montagneux : overpopulation, undernutrition, soil erosion. Mem. Acad. Royale Sc.Outremer Belgique, tome 21,fasc.n° 3.

WELZER, H. (2012) Climate Wars: what people will be killed for in the 21st century. Wiley. ISBN: 978-0-7456-5145-3


环境百科全书由环境和能源百科全书协会出版 (www.a3e.fr),该协会与格勒诺布尔阿尔卑斯大学和格勒诺布尔INP有合同关系,并由法国科学院赞助。

引用这篇文章: DE MARSILY† Ghislain (2024年3月9日), 我们是否面临水资源短缺的风险?, 环境百科全书,咨询于 2024年12月3日 [在线ISSN 2555-0950]网址: https://www.encyclopedie-environnement.org/zh/eau-zh/are-we-at-risk-of-water-shortage/.

环境百科全书中的文章是根据知识共享BY-NC-SA许可条款提供的,该许可授权复制的条件是:引用来源,不作商业使用,共享相同的初始条件,并且在每次重复使用或分发时复制知识共享BY-NC-SA许可声明。

Are we at risk of water shortage?

penurie eau - water shortage

Water on Earth is essentially salty, and it is the evaporation of this water on the oceans that mainly feeds the great water cycle, through evaporation, condensation and precipitation, whose thermal engine is solar radiation. This cycle supplies water to the continents and breaks down into blue water flowing in rivers and groundwater, and green water, which is stored in the soil after rain and is recovered and transpired by vegetation. These flows are almost entirely used by natural continental and coastal ecosystems, as life has developed everywhere to the limits of available resources. Globally, the share of this resource consumed by humanity is still modest: 7% of blue water and 9% of green water, but the spatial distribution of the humanity is not consistent with the spatial distribution of water resources: 21.5% of humanity is concentrated in steppes and arid zones with only 2% of the planet’s blue water resources… In addition, water needs are increasing due to population growth and changes in food habits, while water resources are being affected by climate change. How to solve this challenge of balancing supply and demand in 2050, and a fortiori in 2100, by avoiding, if possible, shortages, famines, bloody conflicts and migration?

1. How much water do we have?

Encyclopédie environnement - pénurie d'eau - mission Rosetta - rosetta flyng comet 67P
Figure 1. The Rosetta probe flying over comet 67P/Churyumov-Gerasimenko, commonly known as “Choury”. Image from the film “Chasing A Comet – The Rosetta Mission”. [Source : DLR, CC-BY 3.0 (http://creativecommons.org/licenses/by/3.0/de/deed.en)], via Wikimedia Commons
The planet Earth was, at the time of its formation, initially anhydrous or low in water, which had accumulated in the Jovian planets further from the sun, and in the comet belts (Oort cloud and Kuiper belt); the Earth received most of its water during the first hundreds of millions of years of its existence, and is proportionally the richest in water of the telluric planets (Mercury, Venus, Earth and Mars). A cometarian origin of this water, initially favoured, is now seriously questioned, particularly since the European Space Agency’s Rosetta mission, which sent the Philae probe on November 12, 2014 (see Figure 1) to land on the comet 67P/Churyumov-Gerasimenko and measure in particular the content of Deuterium in its ice: twice as rich in this isotope of hydrogen as water from the Earth; this type of comets (at least) cannot therefore be at the origin of terrestrial water, instead, the eyes turn to a bombardment by rocky or ferrous asteroids also containing a little water.

Water on Earth is 97% salty, it is its evaporation by solar radiation that feeds the great water cycle, by condensation and precipitation. In this way, 113,000 km3/year are brought to the continents, an enormous volume (1270 times the volume of Lake Geneva) that is broken down into blue water, the one that falls and flows into rivers and aquifers (32%), in green water (see Figure 2), that stored in soils after rain, taken up by roots and transpired by vegetation (65%) and 3% in merge water from icebergs (Hoekstra and Mekonnen, 2012). Our water resource is essentially these inputs from the great water cycle.

Global warming (read The climate machine) will accelerate this cycle and on average increase precipitation while displacing climate zones towards the poles, causing an aridification of Mediterranean latitudes: 110 million hectares (ha) cultivable in these latitudes should be lost, but 160 million ha should be won in northern latitudes (Canada, Siberia) by warming. The frequency of extreme events (floods, droughts) is also expected to increase. In France, a 10 to 20% decrease in precipitation is expected by the end of the century, mainly in summer.

2. The water we use

Men currently consume 7% of the blue water flow, but withdrawals are higher (13%), the consumed part (mainly irrigation water) evaporates and returns to the atmosphere; the unused part remains liquid, infiltrates and returns to groundwater and rivers. We use 9% of the green water for agriculture, the rest goes to natural ecosystems (forests, savannahs, wetlands). We also take a little of fossil water from the stocks contained in the large aquifers of a few countries (India, United States, China, China, Pakistan, Iran, Mexico) at a rate of about 100 km3/year (Döll et al, 2014), but this situation is not sustainable, the stocks of these aquifers will be depleted in a few decades, requiring the collection of water by channels in the large Himalayan rivers (Yang Tse, Gange….) or in other water-rich sites. The fusion of high mountain glaciers due to the overheating of some rivers from the Alps, Himalayas, Rocky Mountains, and especially the Andes Cordillera, where cities like La Paz and the Pacific coast of Peru now live mainly on these melting waters, which will have dried up in less than 30 years.

Encyclopedia environment - water shortage - domestic water cycle diagram - water cycle - groundwater
Figure 2. Schematic illustration of the domestic section of the great water cycle, from abstraction from groundwater to feed urban consumption before ending up in effluents after treatment.

The quantity of domestic water, a definition of which can be found in Figure 2, used ranges from 20 to 500 l/day per person, on average 300 l/d, or 110 m3/year per person. In France, it is estimated at 150 l/day. In 2050, the world population world population should increase to 9.5 billion (Gerland et al., 2014) and to 11 billion in 2100, with worrying growth mainly in Africa (1 billion in 2000, 2.5 billion in 2050 and 4.2 billion in 2100…). With 250 l/d, the total amount of water needed for the planet in 2050 would represent 870 km3/year, or 0.8% of precipitation, or 2.4% of blue water. Domestic water is therefore not a problem of quantity, but only of transport and quality, so of supply and treatment infrastructure. The planet will never have a shortage of domestic water if it builds these infrastructures in time. The city of Windhoek (350,000 inhabitants), the capital of Namibia in the middle of the desert, has been supplied with water for 30 years by a dam and an 800 km long pipe, as well as by the recycling of its treated wastewater, which is re-injected into the local groundwater… !

For industrial water, we each use about 1,300 m3/year. But this water is only 10% consumed; 90% of it is discharged into the environment, sometimes heated (cooling water) or polluted, if it is not treated.

Encyclopedia environment - water shortage - large-scale irrigation
Figure 3. Example of a large-scale irrigation system on maize plots, which consume a large amount of water.

Agricultural water (see Figure 3) is the dominant term (Griffon, 2006; Agrimonde, 2010; Leridon et al., 2011; Marsily (et al.), 2006, 2015a, 2015b). A few 10,000 km3/year of water are needed to feed 7.2 billion people today: 6,500 km3of green water falling on 1.5 billion ha of rainfed agriculture and 3.2 billion ha of pasture land. In addition, 3,500 km3 blue water (50% of which is lost) is collected from rivers and groundwater to water 280 million ha irrigated. It is therefore 8,000 km3/year in the end that it takes to feed humans, i.e. 1,150 m3/year for each (ten times more than domestic water). Yet, and this is scandalous, 1 billion people are still undernourished, in sub-Saharan Africa and South-East Asia, in heavily watered areas, and not in the arid zone; this situation is due to underdevelopment (inefficient and insufficient agricultural production, very low use of inputs, lack of development: dams, irrigated areas,…); see Map 1. Demany countries are also unable to produce the food they need, due to a lack of cultivable land or water: their population has exceeded the country’s capacity to feed them from local resources, and eating habits have changed; they have to import food from countries with surplus production (North and South America, Australia, Thailand, France).  More than 30% of the food produced on the planet is now transported from one country to another, mainly by boat; it is referred to as virtual water, because water-deficit countries balance this deficit not by importing water, but food, which required water to be produced.

Encyclopedia environment - water shortage - map zones lack of water 2000
Figure 4. Areas where there is a chronic lack of blue water resources, physically or economically in 2000. Red: Physical deficit; more than 75% of the river flow is taken for human needs, taking into account recycling. Pink: More than 60% of the river flow is withdrawn. These basins will soon turn red. Orange: Water saving deficit. Resources are abundant in relation to uses, with less than 25% of river flow being withdrawn, but undernourishment is rampant. The financial capacity in terms of equipment is lacking. Blue: Abundant water resources. Withdrawals less than 25% of the flow of rivers. Note that the lack of food is not a problem in the red zone, thanks to the “virtual” import of water, but in the orange zone, which is heavily watered. According to IWMI (2007).

Importing countries, to pay for these imports, sell energy or mineral raw materials, have industrial or tertiary activities, tourism, or have financial returns from the emigrant diaspora. Some countries export high-value agricultural products (coffee, cocoa, cotton) and import food. But importing countries are then dependent, with the risk of political pressure and price pressure in the event of a global shortage. Food autonomy is impossible to achieve today for all countries in the arid zone (North Africa, Middle East) and tomorrow for the whole of Asia, due to the lack of arable land. We see countries like China buying important farmland in developing countries (especially Africa and South America) to grow their own crops and then import the food they need into their countries. Jordan thus depends for 70% on virtual water from abroad, Djibouti for more than 90%. Figure 4 shows the regions of the world according to their blue water resources or needs.

3. The water of tomorrow

In 2050, to supply everyone with the current diet, 11,000 km3 of water per year would be needed, which is possible if deficit countries can afford to buy their food from exporting countries, and if they agree to produce beyond their own needs. If meat consumption accelerates, it will take 13,000 km3/year. Meat consumption has a very large effect on water requirements: 13,000 litres of water are required to produce 1 kg of grain-fed beef, which is 13 times more than for 1 kg of wheat!

These 11,000 to 13,000 km3/year will be divided between rainfed and irrigated agriculture: we will have to increase yields and cultivated areas everywhere. But who says more rainfed agriculture ditclearance and who says more irrigation dit dam construction. The construction of dams or clearing will necessarily have harmful environmental consequences, but if the world’s population continues to grow, should we not try to feed it in the least harmful way possible?  Seawater desalination has a cost of about 0.7 €/m3, and an electricity consumption of 2 to 4 kWh/m3 : this is about ten times too much for irrigation water, but acceptable for domestic water.

Encyclopedia environment - water shortage - formation of arid lands
Figure 5. formation of arid lands, even desert and rarefaction of vegetation cover.

Unfortunately, it seems that we can once again get to know worldwide-families. In 1998, a severe drought in Southeast Asia (China and Indonesia) led to massive purchases of cereals on world markets, with a sharp reduction in stocks, which would have been insufficient if the drought had continued (Rojas et al. 2014; Lizumi et al. 2014). However, stocks have gone from 10 months of global consumption 20 years ago to 2 months today… These years of severe drought in monsoon areas are linked to very intense El Niño events, which occur on average twice a century, according to statistics compiled from parish registers in South America (Orltieb, 2000), and were observed for example in 1876-1878 and 1896-1900 at 19th century, each time causing about 30 million deaths (Sen and Drèze, 1999); in the 20th century, they occurred in 1940 and 1998. The effect of climate change on the frequency and intensity of El Niño events is currently under discussion.

To this worrying image of future agricultural production needs, we can first of all contrast the reduction of waste, because today about 30% of the food purchased is thrown away in rich countries, or lost through poor harvest or poor conservation in poor countries ; we can also contrast the sobriety of diets, because the amount of water needed to feed a landowner varies from 600 to 2500 m3/year depending on the country, the consumption of animal products being the main factor of variation : rich countries consume about twice as many animal products as nutritional needs, emerging countries are on average at the right level, and poor countries on average one-third below needs. But to meet the food needs of water-deficit countries, there are only three options: transfer water through large channels, as China has decided to do (or should decide to do in India), transfer virtual waterin the form of food, or ultimately accept the migration of populations from deficit countries to rich countries, driven from their homes by bloody conflicts and hunger riots, whose recent history has given grim examples (see the focus associated with this article). The problem of migrants that we face today is only the beginning of a long history, which will intensify with climate change, population growth and increased consumption of animal products…

 


References and notes

AGRIMOND (2010) Scenarios and challenges for feeding the world in 2050. Coordinated by S. PAILLARD, S. TREYER & B. DORIN. Editions Quae, Versailles, 295 p.

DIAMOND, J. (2006) Collapse. How societies decide on their disappearance or survival. Gallimard, Paris, 648 p. (Translated from the English, “Collapse”, Viking Penguin, 2005).

DÖLL, P., MÜLLER SCHMIED, H., SCHUH, C., PORTMAN, F.T., EICKER, A. (2014) Global-scale assessment of groundwater depletion and related groundwater abstractions: combining hydrological modeling with information from well observations and GRACE satellites. Water Resour Res. doi:10.1002/2014WR015595

GERLAND P., RAFTERY A., SEVCIKOVA H., LI N., GU D., SPOORENBERG T., ALKEMA L., FOSDICK B., CHUNN J., LALIC N., BAY G., BUETTNER T., HEILIG G. & WILMOTH J. (2014) World population stabilization unlikely this century. Science, 346 : 234-237 ; doi: 10.1126/science.1257469.

GLEICK, P.H. (2014) Water, Drought, Climate Change, and Conflict in Syria. Wea. Climate Soc., 6, 331-340; doi: http://dx.doi.org/10.1175/WCAS-D-13-00059.1.

GRIFFON M. (2006) Feeding the planet. Odile Jacob, Paris: 456 p.

HOEKSTRA, A., M. MEKONNEN (2012) The water footprint of humanity. Proceedings of the National Academy of Sciences of the USA. www.pnas.org/cgi/doi/10.1073/pnas.1109936109

IWMI (INTERNATIONAL WATER MANAGEMENT INSTITUTE) (2007) Water for Food, Water for Life: the Comprehensive Assessment of Water Management in Agriculture. D. Molton (ed.), Earthscan, London, UK, 645 p.

LERIDON, H., MARSILY G. de, coord. (2011) Demography, climate and global food supply. EDP Sciences – Report of the Académie des Sciences, Paris, 313 p. (and www.academie-sciences.fr)

LIZUMI, T., LUO, J., CHALLINOR, A., SAKURAI, G., YOKOZAWA, M., SAKUMA, H., BROWN, M., YAMAGATA, T. (2014) Impacts of El Niño southern oscillation on the global yields of major crops. Nat Commun 5:3712. doi:10.1038/ncomms4712

MARSILY, G. de (2006) Les Eaux Continentales. EDP Sciences, Report of the Académie des Sciences, Paris, 328 p. (and www.academie-sciences.fr)

MARSILY, G. de (2015a) Water, a coveted renewable resource and unequally distributed. Ann. Northern Geol. Soc. T. 22 (2nd series), December 2015.

MARSILY, G. de, ABARCA DEL RIO, R. (2015b) Water and Food in the 21st Century. Surveys in Geophysics, v.36, n°4, July 2015, DOI 10.1007/s10712-015-9335.

ORTLIEB, L. (2000) The documented historical period of El Niño events in Peru: an update of the Quinn record (16th to 19th centuries). In: DIAZ H.F. & MARKGRAF V. eds, El Niño and the southernoscillation. Multiscale variability and local and regional impacts. Cambridge University Press: 496 p.

ROJAS, O., LI, Y., CUMANI, R. (2014) Understanding the drought impact of El Niño on the global agricultural areas: an assessment using FAO’s Agricultural Stress Index (ASI), FAO, Climate, energy and tenure division (nRc) publications. ISBN: 978-92-5-108671-1, ISSN 2071-0992

SEN, A., DRÈZE, J. (1999) Omnibus. Oxford University Press, New Delhi (India): 945 p.

WILS, W., CARAEL, M., TONDEUR, G. (1986) Le kivu Montagneux : overpopulation, undernutrition, soil erosion. Mem. Acad. Royale Sc.Outremer Belgique, tome 21,fasc.n° 3.

WELZER, H. (2012) Climate Wars: what people will be killed for in the 21st century. Wiley. ISBN: 978-0-7456-5145-3


环境百科全书由环境和能源百科全书协会出版 (www.a3e.fr),该协会与格勒诺布尔阿尔卑斯大学和格勒诺布尔INP有合同关系,并由法国科学院赞助。

引用这篇文章: DE MARSILY† Ghislain (2019年2月7日), Are we at risk of water shortage?, 环境百科全书,咨询于 2024年12月3日 [在线ISSN 2555-0950]网址: https://www.encyclopedie-environnement.org/en/water/are-we-at-risk-of-water-shortage/.

环境百科全书中的文章是根据知识共享BY-NC-SA许可条款提供的,该许可授权复制的条件是:引用来源,不作商业使用,共享相同的初始条件,并且在每次重复使用或分发时复制知识共享BY-NC-SA许可声明。