水文测验:为什么要测量河流流量,怎么测?

Encyclopédie environnement - hydrométrie - couverture

  在防洪、供水、农业以及能源生产中,预测和管理河流流量都是必要的,这就需要事先了解如何测量河流流量,由此诞生了水文验测——一门与水文学(研究自然环境中水的科学)和水力学(研究水流的物理学)相辅相成的独特科学。在全球范围内,陆地上的降雨约有三分之一返回海洋(另外三分之二直接蒸发或被植物吸收),每年有近36万亿立方米的水流经河流,但这些水在空间(不同大陆之间、同一河流的不同河段之间)和时间(不同年间、同一年的不同时段之间)上的分布非常不均匀,因此只能通过不断测量这些河流的流量来逼近准确数值。然而,河道流量的连续数据并非简单易得,而是需要综合多种实地测量方法的观测结果。

1. 测量河流流量——一个古老的难题

环境百科全书-水文测量-韦松拉罗迈讷的L'Ouvèze河
图1. 位于韦松拉罗迈讷的L’Ouvèze河
这条地处普罗旺斯的河流的流量波动范围能够从1990年夏天的0.1 立方米/秒(左图)跨越至1992年9月22日的近1200立方米/秒(右图),年平均流量接近6立方米/秒。[来源:EDF DTG]

  水文测验主要研究如何测量河流流量。它是一门独特的科学,与水文学(研究自然环境中的水的科学)和水力学(研究水流的物理学)相辅相成。流量是指单位时间内通过过水断面的水的体积,其单位为立方米/秒(m3/s)。

  每条河流都有自己独一无二的变化特征,由降水节奏和其水文条件决定。比如世界上最大的河流——亚马孙河,每年两个极端月份的流量值相差只有一到两倍,其河口的年平均流量约为206000立方米/秒,不同年间的变化量仅有10%到15%。可见,亚马逊河是一条非常稳定的河流

  与亚马逊河相反,像沙里河这样的非洲河流在乍得湖出口的平均流量为1197 立方米/秒。同一年内,两个极端月份之间的流量相差可达20倍(由150 立方米/秒变化到3000 立方米/秒),不同年份间的平均流量相差可达两倍,如1942年的年平均流量为739 立方米/秒,1956年则为1720 立方米/秒。因此,沙里河的水文特征变化更加显著

  这些流量是如何测量的呢?自古以来,尤其在人类认识到其与农业的关系时,这个问题就备受关注。但解决这个问题的实际困难程度却超乎想象,以至于让詹姆斯·琼斯(英国物理学家,1877-1946)写下这样一句话:“将单位时间内太阳的总辐射转化为质量,大约是伦敦桥下泰晤士河中流动的水量的10000倍; 不过,即便这个数字并不准确,也不能怪罪于我们无从知晓太阳辐射的确切质量,而只能怪我们无法测量泰晤士河的平均流量。”

2. 为什么要测量河流流量?

  河流流量的测量有以下用途:

  1. 指导水工建筑物的运行管理(水力发电设施、灌溉系统、防洪池或低水位支撑系统等);
  2. 指导水工建筑物的尺寸设计(基于对水流特征的了解);
  3. 指导河流流量的管控(确保流量释放量满足下游鱼类存活的最低要求并保障水利设施的其他功能正常,不加剧洪水);
  4. 保护财产及人员安全(通过判定旱涝灾害情况、发布洪水预警等);
  5. 帮助掌握河流变化规律(通过一系列的长期观察积累的历史数据,了解河流的演变规律,提高对自然风险的认识,获知旱涝极端事件发生的概率等)。
环境百科全书-水文测量-伊泽尔河畔的流量测量站
图2. 坐落于格勒诺布尔吉尔斯·圣马丁·德赫雷斯大学校园的伊泽尔河畔的流量测量站。[来源:© LTHE(格勒诺布尔水文与环境转移研究实验室,现为环境地球科学研究所)]

  如今人类面临着诸多挑战,如全球变暖水资源在不同用途(娱乐、能源、灌溉、饮用水)之间的新的需求和合理分配、恢复和保护自然环境及生物多样性、满足社会发展对知识的新需求、社会脆弱性提升等。这些问题也与河流息息相关。在此背景下,对河流流量的测量变得越发重要。

  目前,法国大城市约有3500个水文测量站,主要由环境部门和水力发电及灌溉工程的经营者进行管理。其中80%以上的水文测量站使用远程实时传输数据。这样的站点密度(每100平方千米0.63个)是西欧的平均水平,与英国相近,高于西班牙,但低于瑞士和德国。

3. 如何测量河流流量?

环境百科全书-水文测量-河流中的水力控制
图3. 河流中的水力控制
左图为原理图,右图为安装在河中的实例。注意:一旦越过阈值,就会形成一股急流,引发水跃现象,进而产生涡流,造成巨大的能量损失。[来源:© EDF DTG]

  直接测量流量的操作非常复杂,除特殊情况外,无法直接连续监测流量。现实中,利用校准曲线建立水位与流量的关系,然后通过连续测量水位推算流量。因此水文测验分为四个步骤:

  1. 测量选址:选取水力控制设施的上游(见图3)或其他适合连续测量水位高度-流量关系的位置;
  2. 水位测量:搭建仪器,实现水位的周期性连续测量;
  3. 流量换算:绘制水位-流量的校准曲线并掌握其变化规律,实现水位与流量的换算;
  4. 分析归档:对流量的时空波动性进行分析,最后归档。

3.1 水位高度的连续测量

  在很长一段时间里,水位测量就是每天(或更频繁)利用刻度尺目视读数(图4)。后来人们利用传感器来监测一个时间步长内的高度变化,其中时间步长是根据流量的波动性确定的(在小型急流盆地中波动较大,在广阔的平原流域波动较小)。目前正在使用的有几代传感器,包括浮标式、气动式、压阻式、超声波式、电导率式等。

环境百科全书-水文测量-尼日尔河上的标尺
图4. 位于莫普提的尼日尔河上的标尺。[© LTHE,现名IGE]

  上述设备需设置在水中或水面上,而21世纪初问世的雷达水位计(图5)则可在水面之上工作(设备不受水、沉积物和水中漂浮物的影响,更加耐用),而且对温度不敏感(克服了水下超声的劣势)。然而,需要将雷达移离岸边(边缘效应),而且需要通过波导调节雷达波的接收,这使得雷达水位计的代表性受到一定程度的质疑。

环境百科全书-水文测量-雷达测量水位
图5. 用雷达进行水位测量。[© EDF DTG]

3.2 测量校准曲线的仪器

  对河流能够达到的所有流量范围(干旱、中等水流以及洪水)进行的定期测量,主要是通过流场探测或示踪法实现的。

  长期以来,流场探测(图6和图7)的测量范围一直局限于水面上(一般通过能够指示水流的棍状装置——“浮子流量计”来测量)。目前,通过速度传感器(机械转子,图6)可以获得更加完整的流场图,其原理是在水流驱动下,螺旋桨的转动与由此产生的感应电压成正比(法拉第定律),即流速与感应电压成正比。

环境百科全书-水文测量-水文转子
图6. 在格勒诺布尔校园伊泽尔河安装投入的水文转子。[© LTHE,现名IGE]
环境百科全书-水文测量-速度场测量流速的原理图
图7. 通过流场探测进行流速测量的原理图
速度分布图是通过对不同深度上的流速进行持续30到40秒的测量而得

  20世纪90年代初,声学多普勒流速剖面仪(一种基于多普勒效应的海洋学设备)的诞生,标志着水文测验真正的技术性飞跃(图8)。这项技术大大减少了现场测量所需的时间,尤其适用于较大的河流上,现在也能够用于深度超过50厘米的小型河流。

环境百科全书-水文测量-基于脉冲多普勒原理测速
图8. 声学多普勒流速剖面仪基于脉冲多普勒原理测速
通过将超声脉冲发射到水中,分析悬浮粒子背向散射回波的频率偏移。该设备通常有3到4个传感器在垂直方向发射发散声束,使其可以测量三维空间中的速度分布。[©EDF DTG]
环境百科全书-水文测量-稀释法测流
图9. 左:罗丹明注射装置。右:罗丹明进入溪流
示踪剂(对动物和植物无害)不会使水变色。投入水中之后会采用荧光计分析其稀释程度(通过测量荧光衰减),不过目前这项工作需要在实验室进行,之后会发展到直接在采样点进行测试稀释程度[©EDF DTG]

  示踪法测流(图9)是通过将示踪剂注入到水流中,监测其浓度随时间的变化。在示踪剂充分混合、测量河段内没有水流损失的条件下,根据质量守恒定律,稀释系数与河流流量成正比。历史上曾使用过几代示踪剂,目前倾向于使用荧光示踪剂(如罗丹明和荧光素)或食盐。

3.3 建立水位和流量关系的校准曲线

  建立水位与流量之间关系的校准曲线(图10),是流量测量过程中最为精细的环节。长期以来这条曲线由专业人员手工绘制,如今这条曲线的确定也可以依靠决策支持工具,它综合了统计学方法,考虑了仪器测量和水力模型中的计量不确定性。

环境百科全书-水文测量-格勒诺布尔校园站的校准曲线
图10. 格勒诺布尔校园站的校准曲线
在大多数河流测量站点校准曲线都会因多种原因发生变化,而且它在原则上也永远不会趋于稳定。在格勒诺布尔校园站的例子中,图示的校准曲线在1992到2012年间是有效的。但是随后,由于2012年9月伊泽尔河堤坝工程启动,这一曲线在2013年4月份之前剧烈变化,并在之后再一次趋于平稳。[©LTHE,现为IGE]

  水位与流量之间的关系并不会像人们预期的那样稳定,特别是当水力控制不是来自人工构筑物的时候。植被、人类活动、洪水,通过固体运输、侵蚀或沉积等机制,都会或多或少地对河流流量分布产生影响。因此校准曲线的监测需要讲究策略,需要同时考虑测量时间(测量频率)以及水文条件(低水位、平均水位、洪水等)等因素。监测和绘制校准曲线是水文测验的核心工作。

  目前已发明出能够连续测量流速的固定式设备,可以在水面上(测速雷达)或在水流中(时差法超声波或多普勒效应)工作。但是水文测验的基本原理从未改变,那就是找到水位、流速和流量之间的校准关系,并在实际测量中进行校准。这些测量设备在高度和流量关系确定之前(在河流中受航行或潮汐影响)就已经问世,而得益于当前的科技进步,它们的安装成本大为降低。

环境百科全书-水文测量-LSPIV原理图示
图11. LSPIV原理图示
a)漂浮物播种,b)图像记录,c)正射校正,d)流计算LSPIV表面速度测量(来自Muste)

  新的流场成像技术在流量测定方面极具应用前景:利用视频图像处理技术,通过水面所有固体的位移(树枝,气泡,树叶……)以及河流的湍动来确定河流表面的速度(图11)。这项技术起源于实验室使用的粒子图像测速技术(Particle Image Velocimetry,PIV),但主要用于大型河流的研究,故称大尺度PIV(LSPIV),其功能包括:(1)记录水流图像的时间序列;(2)对图像进行几何校正以避免形变干扰;(3)使用与模式相关的统计分析方法计算水流示踪物的位移;(4)在已知断面几何形状的情况下,根据垂直流速分布模型,通过LSPIV流场估计总流量

  视频图像处理技术也为未来辅助防洪措施开辟了道路。洪水一般具有突发性,导致道路堵塞(道路被洪水淹没)和安全风险(如汹涌的水流),阻碍抢险队伍的及时干预,而视频图像处理在面对这些因素时可以很好地发挥作用。但是,这项技术也存在限制条件,在能见度低(夜晚、雾天等)的情况下不能使用。

3.4 数据一致性的检查

  由水位值导出流量值后,对结果进行评价并将其归档到数据库,是水文测量工作的最终环节。具体包括:对站内的记录进行一致性测试(识别位移和传感器漂移、平滑原始信号、填补缺失记录等);借助不同的水文模型,使本站点与上下游其他测量站点之间的数据规律一致;参考测量地已有的历史数据,结合降雨量及取水等影响因素对测量值进行解释。

  整个测量过程是重复进行的,因此可能会发现校准曲线甚至校准策略的问题,从而对其进行进一步的完善。水文事件发生较长时间之后获得的信息(水力建模、洪水测量等)可能与当时的监测结果有极大不同。因此,通常会设置18~24个月的时间用于整编信息。

  近年来,水文测验不确定性的量化取得了很大进展,但仍需进一步研究。对于最优的监测站(即校准频率小于每年4到5次),80%的时间内河流流量的不确定性应被控制在5%以内。

4. 水文测验目前面临哪些挑战?

  水文测验是一个劳动力密集的作业过程,它要求现场作业,对作业人员在计量、水力学、水文学等方面的专业知识要求较高,是一项具有工匠精神的工作。一个观测站一年的运行成本通常与设置监测点的初始投资成本处于同一量级。因此,水文测量是一项长期任务,削减其预算会对数据质量产生重大影响。

  水文测验也是一个复杂的过程,因为它会影响自然环境,牵涉到所有环境相关的危害,数据确认所需的时间可能很长。因此,在信息发布数年之后,测量现场给出的信息(甚至用于决策的信息)和经过考证或发现了新要素之后的综合确认数据之间,可能会有显著的差异(在洪水或干旱等极端情形下,局域极值间差异可能达到两倍之多)。

  最后,水文测验也在不断的发展中。新的成像技术(LSPIV)和通信手段的产生(电话、互联网)将大大增加数据量,由此产生了新的问题(比如要如何处理考证同化以及保存这些数据),对作业人员技术能力的要求也会相应提高。所有这些,都是在当前应对气候变化和保护生物多样性的背景下,对更好地了解环境减少灾害的真实社会需求的回应。


环境百科全书由环境和能源百科全书协会出版 (www.a3e.fr),该协会与格勒诺布尔阿尔卑斯大学和格勒诺布尔INP有合同关系,并由法国科学院赞助。

引用这篇文章: LALLEMENT Christian (2024年3月6日), 水文测验:为什么要测量河流流量,怎么测?, 环境百科全书,咨询于 2024年12月21日 [在线ISSN 2555-0950]网址: https://www.encyclopedie-environnement.org/zh/eau-zh/hydrometry-measuring-flow-river-why-how/.

环境百科全书中的文章是根据知识共享BY-NC-SA许可条款提供的,该许可授权复制的条件是:引用来源,不作商业使用,共享相同的初始条件,并且在每次重复使用或分发时复制知识共享BY-NC-SA许可声明。

Hydrometry: measuring the flow rate of a river, why and how?

Encyclopédie environnement - hydrométrie - couverture

Predicting and managing river flows is a necessity for flood control, water supply, agriculture and energy production. However, knowing how to measure these flows is a prerequisite. This constitutes hydrometry, a science distinct and complementary to hydrology (science of water in its natural environment) and hydraulics (physics of flows). About one-third of the rain that falls on the continents returns to the sea and oceans (the other two-thirds evaporating directly or being consumed by plants). On a global scale, nearly 36,000 km3 of water flows through rivers each year. But these quantities can be very unevenly distributed, both from one continent to another, and – for the same river – from one year to another or within the same year. This irregularity can only be approached by permanently measuring the flows of these rivers. However, the continuous measurement of the flow of a watercourse cannot be obtained directly, but is the result of an experimental process combining several field observations..

1. Measuring river flow rates, an old but difficult issue

Encyclopédie environnement - hydrométrie - Ouvèze à Vaison la Romaine
Figure 1. L’Ouvèze at Vaison la Romaine; the flow of this river of Provence has been able to increase from 0.1 m3/s – left photo, summer 1990- to nearly 1200 m3/s- right photo, September 22, 1992- this for an average annual flow close to 6 m3/s. [© EDF DTG]
Hydrometry, a science distinct and complementary to hydrology (science of water in its natural environment) and hydraulics (physics of flows), is the discipline that seeks to measure river flows. The flow rate -volume of water crossing a section of a stream for one unit of time- is expressed in cubic metres per second (m3/s).

Each watercourse follows a particular regime, determined by the rhythm of precipitation and its hydrological “terroir”. For the world’s most populated river, the Amazon, the variation in flow between two extreme months of the same month is only one to two. And from one year to the next, its average annual flow at its mouth varies only 10 to 15% around its 206,000 m3/s value. The Amazon is an extremely regular river.

On the other hand, an African river like the Chari has an average flow of 1197 m3/s at its outlet in Lake Chad. Within the same year, the variation in flow between two extreme months is a factor of 20 (150 to 3000 m3/s). And from one year to the next, the average annual flow can vary by a factor of two: 739 m3/s in 1942, 1720 m3/s in 1956. The Chari therefore has a much more contrasting regime.

But how are these flows measured? Since ancient times, mankind has been interested in it, at the very least, when it became dependent on agriculture. But it is a much more difficult problem than its familiarity would suggest. What made James Jeans (British physicist, 1877-1946) write: “The total radiation emitted by the Sun in the unit of time, transformed into mass, is something like 10,000 times that of the water flowing in the Thames under the London Bridge; and incidentally, if the factor 10,000 is gross, it is not because we do not know the exact mass of the solar radiation, but because we are not able to measure the average flow of the Thames. »

2. Why are river flow rates being measured nowadays?

The measurement of river flows serves several purposes:

  • operational management of hydraulic structures (hydroelectric facilities, irrigation systems, flood control tanks or low water level support systems, etc.);
  • the dimensioning of these structures, through knowledge of the characteristics of these watercourses;
  • regulatory control, for verification of flow release obligations downstream of structures (minimum flow to ensure fish survival, maintenance of other uses; non-aggravation of floods), declaration of disaster status (droughts…);
  • protection of property and persons, through flood warning;
  • of heritage, by the constitution of series of long-term observations, essential to know the evolution of river regimes, to raise awareness of natural risks, to assign a probability to extreme events (floods, low water levels).

Encyclopédie environnement - hydrométrie - Station de mesure des débits de l’Isère à Grenoble
Figure 2. Flow measurement station of the Isère in Grenoble on the university campus of Gières Saint-Martin d’Hères. [© LTHE (Laboratoire d’Etude des Transferts en Hydrologie et Environnement, now Institut des Géosciences de l’Environnement, IGE, Grenoble)]
The interest of these measures is now reinforced by the current challenges of global warming, new demands for sharing water between different uses (recreational, energy, irrigation, drinking water), the restoration or preservation of natural environments and their biodiversity, the social demand for knowledge, the increased vulnerability of society.

It should be noted that there are currently about 3500 hydrometric stations in metropolitan France, mainly managed by the Ministry of the Environment and by operators of hydroelectric or irrigation works. More than 80% are teletransmitted in real time. This density (0.63/ 100 km²) is in the average of Western Europe, about the same as that of the United Kingdom, higher than Spain, but lower than Switzerland or Germany.

3. How is the flow of rivers measured?

Encyclopédie environnement - hydrométrie - contrôle hydraulique en rivière
Figure 3. hydraulic control in the river; on the left, the principle diagram; on the right, an example in the river. Note the formation of a torrential flow regime as soon as the threshold is crossed, followed by a hydraulic jump producing eddies and a great loss of energy. [© EDF DTG]
Direct flow measurement is a complex operation that can only be performed occasionally. Except in very specific cases, direct and continuous monitoring of the flow cannot be carried out. It is the water level that is measured continuously, after having previously connected it to the flow rate by a calibration curve. This is why hydrometry is a 4-step process:

  • the continuous measurement of heights upstream of a hydraulic control (see Figure 3), or at another location where a unique height-flow relationship can be established,
  • the realization of periodic gauges to build this relationship (calibration curve), allowing to convert the heights into flows,
  • the layout of this calibration curve and the detection of its evolutions,
  • then, after conversion of heights into flow, critical analysis of spatial and temporal fluctuations, then their archiving.

3.1. Continuously measure heights

For a long time, height measurements consisted of visual readings taken daily (or at a shorter frequency) on graduated scales (Figure 4). Over time, the process has become automated by the installation – in addition to these reference scales – of sensors to monitor height variations at a time step adapted to flow fluctuations (very reactive in the case of a small torrential basin; much smoother in a large plain river basin). Several generations of sensors now coexist on the networks: float, pneumatic, piezoresistive, ultra-submerged sound, differential conductivity measurement, etc….

Encyclopédie environnement - hydrométrie - Echelle sur le Niger à Mopti
Figure 4. Scale on Niger in Mopti. [© LTHE, now IGE]
All these devices are placed in or in contact with water; the radar (Figure 5) – which appeared at the beginning of the 2000s – offers the advantage of being out of the water (a guarantee of better durability, as it is not subject to the aggressions of water, sediments & bodies floating in rivers) and insensitive to temperature (a characteristic that is lacking with emerging ultra sounds). However, the need to move the radar away from the shoreline (edge effects) and the wave reception task conditioned by the waveguide may nevertheless penalize the representativeness of the measurement in relation to the reference scale.

Encyclopédie environnement - hydrométrie - Mesure de niveau par radar émergé
Figure 5. Level measurement by emerged radar. [© EDF DTG]
.

3.2. Calibrate the calibration curve: the gauges

Periodic gauging is carried out on the entire range of flows that the river can reach (in drought, medium water, and floods), mainly by exploring the velocity field or diluting a tracer.

The gauging by exploring the velocity field (Figures 6 and 7) of the flow has long been limited to surface velocities (by means of “floats“, sticks weighted according to the current). More complete maps of the velocity field are now available using speed sensors: mechanical reels (Figure 6) – a propeller rotating in proportion to the local velocity of the current – electromagnetic – the displacement of water producing an induced voltage proportional to the local velocity of the current (Faraday Principle).

Encyclopédie environnement - hydrométrie - Moulinet hydrométrique mis en œuvre à la station de Grenoble
Figure 6. Hydrometric reel implemented at Grenoble Campus sur l’Isère station. [© LTHE, now IGE]
Encyclopédie environnement - hydrométrie - Principe de jaugeage par exploration du champ de vitesses
Figure 7. Principle of gauging by exploring the speed field. The speed map is plotted by 30 to 40 seconds of stationing at several depths and on several verticals.

Since the early 1990s, ADCP profilers (Acoustic Doppler Current Profiler: a device from oceanography, based on the Doppler effect) have been a real technological leap forward in hydrometry (Figure 8). They significantly reduce on-site measurement time, especially on large rivers, and are now suitable for small rivers (but a minimum depth of 50 cm is required).

Encyclopédie environnement - hydrométrie - La mesure de vitesse par l’ADCP repose sur le principe du Doppler pulsé
Figure 8. The ADCP velocity measurement is based on the pulsed Doppler principle: emission of ultrasonic pulses into the water and analysis of the frequency offset of the backscattered echo of the suspended particles. The device generally has 3 or 4 transducers emitting divergent acoustic beams around the vertical, which allows the vertical profile of velocities to be measured in three dimensions. [© EDF DTG]
Encyclopédie environnement - hydrométrie - dispositif d’injection de rhodamine
Figure 9. Left: Rhodamine injection device. Right: Rhodamine enters the stream. The tracer (harmless to fauna and flora) does not colour the water. Its dilution is then analysed by a fluorimeter (measuring the attenuation of its fluorescence), still today in the laboratory; tomorrow can be directly in the field [© EDF DTG]
Dilution gauging (Figure 9) consists of injecting a tracer in solution into the watercourse and monitoring its concentration over time. When the condition of good tracer mixing is ensured – and if there is no loss of water in the dilution basin – by mass conservation law, the dilution factor is directly proportional to the flow of the river. Several generations of tracers have been historically used, the current state of the art being to favour fluorescent tracers (rhodamine, uranine) or cooking salt.

3.3. Linking height and flow: the calibration curve

The most delicate link is the setting curve, the relationship between height and flow (Figure 10). For a long time manually drawn, according to the operators’ expertise alone, the definition of this curve now calls for decision support tools, tools combining statistical approaches, taking into account metrological uncertainties on gauging, hydraulic models.

Encyclopédie environnement - hydrométrie - Courbe de tarage de la station de Grenoble
Figure 10. Taring curve of the Grenoble Campus station. For most river stations, the setting curve can change for multiple reasons and never tends – as a general rule – towards stabilization. Here at Grenoble Campus, the calibration curve shown is the one valid between 1992 & 2012. It was then modified due to work carried out on the Isère dikes from September 2012. The curve evolves rapidly until April 2013 and seems to have stabilized again since. [© LTHE, now IGE]
The height-flow relationship, if it is considered stable over a given period of time, is not necessarily stable over time, especially when the hydraulic control is not constituted by an artificial structure. Vegetation, human intervention, flooding – through the associated mechanisms of solid transport, erosion or deposition – more or less often modify the flow profile of the river. Monitoring the setting curve thus conditions a real gauging strategy, to be adapted both temporally (frequency of gauging) and according to water conditions (low water, average water, floods). Monitoring and plotting the calibration curve is the core business of hydrometry.

The state of the art has recently evolved with indwelling devices that allow continuous speed measurement, either on the surface (speed radar) or indwelling in the flow (transit time ultrasound or Doppler effect). The principles of hydrometry are not fundamentally changed: a calibration relationship of height, velocity(s), flow rate remains to be calibrated throughout the operation of the measurement site. These systems were already implemented when a unique relationship between height and flow was not verified (rivers regulated by navigation and/or subject to tide), but current technological developments make it less costly to distribute this type of installation.

Encyclopédie environnement - hydrométrie - Principe de la LSPIV
Figure 11. LSPIV principle: a) seeding of floating bodies, b) image recording, c) ortho image rectification, d) flow calculation from LSPIV surface velocity measurements (from Muste)

New imaging technologies bring a promising innovation: video image processing to determine the field of surface velocities of a river (Figure 11). We use here the displacement of all solid bodies transported on the surface (twigs, bubbles, leaves…) as well as the turbulence of the flow. This technique is derived from the Particle Image Velocimetry (PIV) used in the laboratory, but for a study on large-scale river-type objects, hence its name Large-Scale PIV (LSPIV). This includes:

  • recording time-stamped image sequences of the flow,
  • a geometric correction of the images to avoid perspective distortions,
  • a calculation of the displacement of the flow tracers using a statistical analysis in correlation with the patterns.

Knowing the geometry of the river section and assuming a vertical velocity distribution model, the total flow is estimated from the LSPIV velocity field.

This technique of the future opens the way to a densification of flood measures: the fleeting nature of the episodes, the difficulties of access (flooded roads), the security conditions (violent flows) not allowing the teams to intervene as much as necessary. However, it cannot yet be implemented in case of poor visibility (night, fog).

3.4. Check the consistency of the data

The conversion of heights into flow, the critique of the results, the archiving in the database are the last part of the hydrometry business.

Consistency tests are carried out on the recordings at the station (identification of shifts & sensor drifts, smoothing of the raw signal, filling in gaps over recording failure periods) and by more or less sophisticated hydrological models:

  • in coherence with other upstream and downstream measurement sites,
  • with reference to historical data already compiled at the measurement site, by comparing it with previous years, looking for explanations based on the measurement of rainfall, known influences (water withdrawals, etc.)

The whole process is iterative, and therefore can lead to questioning the current calibration curve and thus redefine its layout, or even the calibration strategy. Information obtained long after the occurrence of the hydrological event (hydraulic modelling, flood gauging,…) can lead to significant changes in the results published at a station. It is common to allow a period of eighteen months to two years for the consolidation of information.

The quantification of uncertainties in hydrometry has progressed considerably in recent years, but remains an area of investigation for the profession. It is considered that on the best stations (i.e. those where the calibration curve can be followed at a rate of less than 4 or 5 gauges per year), the current flows – encountered 80% of the time – are consolidated to within 5%.

4. What are the current challenges for hydrometry?

Let us keep in mind that hydrometry is a labour-intensive process, which requires travel in the field and is a real craftsman’s task combining metrology, hydraulics and hydrology. As a result, the annual operating cost of a station is often in the order of magnitude of the initial investment cost to create the measurement point. Hydrometry is therefore a long-term task, where budget cuts have a major impact on the quality of the data produced.

Hydrometry is also a complex process, as it affects the natural environment, with all its associated hazards, and where the maturation times of the data can potentially be long. Thus, between information given on the spot (or even used to make a decision) and consolidated data after criticism or discovery of new elements, significant differences may appear (twice as much for an extreme regime value, in flood or drought) several years after their occurrence.

Finally, hydrometry is a process in the making: the availability of new imaging (LSPIV) and communication technologies (telephony, internet) will increase the flow of collected data. Questions will quickly arise about the processing of this information, its criticism and homogenization, its conservation, and the skills that accompany this massification of information. All this is in response to a real social demand for a better knowledge of the environment, a reduction in vulnerability to hazards, in the current context of climate change and the preservation of biodiversity.


环境百科全书由环境和能源百科全书协会出版 (www.a3e.fr),该协会与格勒诺布尔阿尔卑斯大学和格勒诺布尔INP有合同关系,并由法国科学院赞助。

引用这篇文章: LALLEMENT Christian (2019年2月7日), Hydrometry: measuring the flow rate of a river, why and how?, 环境百科全书,咨询于 2024年12月21日 [在线ISSN 2555-0950]网址: https://www.encyclopedie-environnement.org/en/water/hydrometry-measuring-flow-river-why-how/.

环境百科全书中的文章是根据知识共享BY-NC-SA许可条款提供的,该许可授权复制的条件是:引用来源,不作商业使用,共享相同的初始条件,并且在每次重复使用或分发时复制知识共享BY-NC-SA许可声明。