光合作用的碳代谢途径

photosynthese

       大气二氧化碳(CO2)中的碳是如何整合到有机物中进而构成生物体(生物量)的?数十亿年来,这一过程在生物光合作用的光化学阶段发生,利用叶绿素从阳光中回收能量来实现。然而,光合作用必须调整这些机制以适应地质时间尺度上的各种环境变化。光合作用光化学阶段产生氧气(O2)在大气中的富集(参阅“揭示光合作用的真相”)便是其中一个重要例证。在进化过程中,不同的独特策略生成了多样化的有机生物分子,用于人的衣、食、住、行。

1. 什么是光合作用

1.1. 利用空气中的二氧化碳来合成生物量

环境百科全书-碳-光合作用方案
图1. 光合作用,生物量和氧气的来源。该简图表示光合作用的主要反应,产物(代谢产物)以及富含片层结构的细胞器:叶绿体,即光合作用发生的场所。[来源:©Jean-François Morot-Gaudry]
Simple metabolites(简单代谢物质):Sugar(糖),Starch(淀粉),Cellulose(纤维素);Fatty acids(脂肪酸),Lipids(脂质);Aminoacids(氨基酸),Proteins(蛋白质);H2O & Minerals(水和矿物质);Seconary metabolites(次生代谢物质):isoprenoids(类异戊二烯),Terpenes(萜烯),Carotenoids(类胡萝卜素),Sterols(甾醇),Chlorophylls(叶绿素);Phenylpropanoids(苯丙氨酸),Phenolis acids(酚酸),Flavonoides(黄酮),Liginins(木质素);Glycosides and Alkaloids(糖苷和生物碱)

  光合作用是一种古老的机制(已有38亿年历史),是含叶绿素的绿色植物、藻类及光合细菌通过一系列生物物理和生化反应阳光中的电磁能以及大气二氧化碳土壤矿物质中的碳合成有机分子的过程(如图1)。

       因此,光合生物是自养生物*。光合作用是生物食物链中大多数分子的起源,也是地球上大部分有机生物量的起源。光合作用在叶绿体中发生,这种数微米大小的绿色细胞器中蕴藏着光合作用的机制(见“揭示光合作用的真相”),光合作用的机制可简化为下式:

CO+ H2O + 光能 → 能量-富含碳的分子 + O2

       光合作用每年从大气二氧化碳中固定1150到1200亿吨碳,其中600亿吨来自大陆。而该过程仅用了照射到地球上太阳光能的很小一部分(约1-2%)。从全球规模看,其功率约为130-140兆瓦(1兆瓦=1012瓦)级别,相当于人类能耗的6倍。光合作用生物是怎样做到这些的呢?

1.2. 光合作用分为两个阶段

       快速的光化学反应阶段,发生在叶绿体的膜系统——类囊体上(图1、2)。

环境百科全书-碳-光合作用阶段-本森-巴沙姆-卡尔文循环
图2. 光合作用的两个阶段:(1)光化学反应阶段:从光能生成具有还原能力的NADPH和ATP;(2)生化反应阶段:二氧化碳的碳固定以及有机化合物的合成:羧化反应和本森-巴萨姆-卡尔文循环(BBC,Benson-Basham-Calvin循环)。[来源:©Jean-Francois Morot-Gaudry]
Light(光),Photochemistry(光化学阶段),Photosystems ATPases(光合系统ATP酶),Biochemistry(生物化学阶段),Carbon metabolism(碳代谢),BBC Cycle (BBC循环),Sugars(糖类)

  在此阶段,太阳光的可见被叶绿体中的叶绿色素捕获。获取的能量随之传递给蛋白质/色素复合体(光系统),通过连续的氧化还原反应将转化能并进一步变为化学能,储存在富含能量的分子还原态NADPH中。同时,类囊体膜两侧的质子梯度为生成ATP提供能量。在此过程中,水分子(H2O)是电子(e)、质子(H+)和氧气(O2)的来源。这一过程在百科文章中有详细描述(见“揭示光合作用的真相”)。

  • 代谢阶段,比前一阶段慢,发生在叶绿体内液-基质中(图2)。

  大气二氧化碳碳的固定羧化反应进行需要作为碳受体方可发生并生成有机化合物。这一光合作用的碳代谢路径被称为本森-巴萨姆-卡尔文循环(Benson-Basham-Calvin Cycle)

  本文主要描述:

  • 光合作用从大气二氧化碳进行碳固定的生化机制;
  • 上述机制随环境变化的演化;
  • 不同地质时期大气中氧气的出现及其影响。

2. 植物怎样从二氧化碳中固定碳

2.1. 一些历史

  珍妮·瑟讷比埃(Jean Sénebier,参阅“研究光合作用的先驱”)早在1782年就首次描述“光合生物在光照条件下固定二氧化碳并维持植物生长”。从18世纪后期到20世纪40年代中期,通过何种路径从二氧化碳中吸收碳进行光合作用依然成谜。19世纪早期,布森戈(J.B Boussingault)和拜耳(F. Bayer)最初认为碳水化合物是由碳与水成分结合而成,由此糖得名为碳水化合物。大多数表示糖类的分子式实际可写成碳和水组成基本分子(CH2O)n的多聚化。之后,其他几个化合物也被认为是光合作用的初级产物,例如碳酸(H2CO3)、甲酸(HCOOH)等最简单的羧酸*。然而,那时没有实验结果能证实这些假设。甲酸是光合作用第一产物的假说之所以在很长一段时间内出现在文献中,也只是因为它极简单但能说明问题。

2.2. 本森-巴萨姆-卡尔文循环

  • 对二氧化碳受体的寻找及特定羧酶的发现
    环境百科全书-碳-Benson-Basham-Calvin循环
    图3. 本森-巴萨姆-卡尔文循环示意图。表示光合作用碳元素被引入及还原的步骤,包括形成3-磷酸甘油酸(PGA)、磷酸丙糖,光合作用第一中间产物,以及二氧化碳受体与核酮糖-1,5-二磷酸(RUPB)的再生。[来源:Schéma Roger Prat, in Morot-Gaudry, Dunod, 2009]

  放射性同位素11CO2用作标志物进行的首个实验[1]显示,11C出现在一种三碳化合物中,表明二氧化碳的碳受体是二碳化合物。但这一假定的化合物一直未能确定。

  直到14CO2用作放射性示踪剂后,本森[2]才发现14CO2中的碳元素结合入一种更复杂的原有碳结构:一个五碳磷酰基化合物,核酮糖-1,5-二磷酸(RuBP)(参阅“本森-巴萨姆-卡尔文循环的解密”)[3]。该化合物化学结构易于加碳(称为羧化反应),生成一个极不稳定的六碳化合物,并立即水解为两个三碳(C3)分子,即磷酸甘油酸(PGA[4])(图3)。

  将二氧化碳的碳元素结合到RuBP上的酶是一个羧化酶*,即RuBP羧化酶,后文称RubisCO(见下文)。30亿年来,光合作用这一特定羧化酶是二氧化碳的元素进入地球上大多数有机分子关键途径(参阅“RubisCO”)。

       RubisCO是一种高分子量(550kDa)的复杂酶[5],存在于叶绿体基质中,占可溶性蛋白的30-50%。RubisCO是生物圈中最重要的定量酶,是叶片中有机氮的主要储备[6]。由于它在自噬中的核心作用,地球上每个人的生存都需要5千克RubisCO的合成。

  • 磷酸甘油酸还原为磷酸丙糖
    环境百科全书-碳-卡尔文-光合作用-碳
    图4. 本森-巴萨姆-卡尔文循环中关于碳交换的简图。图中未显示磷酸化过程,只展示了分子中碳的数目。[来源:Schéma Roger Prat, in Morot-Gaudry, Dunod, 2009]

  从光化学反应阶段还原态NADPH和ATP中恢获取能量(见“揭示光合作用的真相”),三碳PGA分子还原为(得电子)磷酸丙糖分子(含3个碳和一个磷酸分子)并获能。这一酶促还原中,每还原一个PGA分子,需要消耗一个ATP和一个NDPH。

  • 磷酸丙糖的命运

  每生成6个磷酸丙糖分子中,只有1个用于碳水化合物、氨基酸和脂质等的合成其他5分子的磷酸丙糖将用于二氧化碳受体RuBP的再生(图4)。RuBP分子的再生耗能高,每分子需要消耗2分子NADPH和3分子ATP,不过这些能量是由太阳免费提供的。

  由于这一循环的第一产物是一个三碳分子,具备该循环反应的植物被称为C3型光合植物

  其他未用于RuBP再生的磷酸丙糖将被用于以下方面:(a)在叶绿体中用于合成淀粉、氨基酸和脂质;(b)被转运出叶绿体,由细胞质中的酶转化为糖供进一步代谢(见“蔗糖或者淀粉?”)。

  • 光合作用同化物的合成和运输
    环境百科全书-碳-植物中原液和韧皮汁液的循环
    图5. 植物中原液和韧皮汁液的循环
    [来源:©Jean-François Morot-Gaudry]。Photosynthesis (光合作用),Leaf(叶片),Sugar loading (载糖),Phloeme sap(韧皮部汁液),Xyleme sap(木质部汁液),Roots and tubers(根和块茎),Sugar unloading(卸糖)

  植物传导系统中与运输原液的木质部平行的韧皮部能够运输大量汁液,将光合作用产物和同化物质运输并分散到植物各处(图5)。韧皮汁液的长距离运输要求在源器官树叶中合成的同化物(蔗糖,主要是氨基酸)通过一个主动和选择性的装载机制被装配到传导复合体中,之后被持续卸载到谷粒、种子、水果、块根和块茎等接收器官中。

2.3. 温度的影响?

  温度对生物物理和代谢过程的影响不同。叶绿色素吸光及NADPH和ATP合成等生物物理过程对温度变化并不敏感。然而,二氧化碳和氧气固定和糖类合成、胞内和器官间分子交换等生化反应却有高度的温度依赖性。温度平均每升高10℃,生化反应的速率就会增加一倍。

  在温带地区,空气和植物温度受强烈的季节性和日内变化影响,这些变化与到达地表的太阳能量变化一致。植物不同程度地适应了快速变化的日内早晚温差。叶片的温度通常会随日光变化而快速变化。当环境温度很低时,例如在阿尔卑斯山脉,植物形成了能应对这些温度变化的机制(见“植物如何应对高山胁迫?”)。

  植物还可以适应长期的气候变化。在所有情况下,随着温度升高,光合作用随之增强。但对于一些植物来说,适应新的温度条件有可能会导致光合效率下降。

3. 不同地质时期的氧气产量

  地球上第一次光合反应发生在三十亿年前,那时的大气层主要由水(H2O),二氧化碳(10%至15%),二氧化氮(N2)和硫化氢(H2S)组成,几乎没有氧气。那时,在将光能转换为含能分子的过程中,原始的光合细菌,如紫色亚硫酸细菌,会像绿色亚硫酸细菌一样氧化硫化氢,此时的光合作用不产生氧气

  随着蓝细菌祖先的出现,H2O变成取之不尽的氧化底物以及电子和质子的提供者,进而产生氧气释放到大气中,光合作用变成了产氧类型(见“揭示光合作用的真相”)。此时,这两种类型的光合作用共存:

  CO2 + 2 H2S→(CH2O)+ H2O + 2S(无氧光合作用)

  CO2 + 2 H2O→(CH2O)+ H2O + O2(有氧光合作用)

  大约25亿年前,产氧光合作用出现之后,由于壳层矿物能够以氧化铁(Fe2O3)的形式大量捕获氧气,大气中的氧气浓度在很长一段时间内仍保持较低水平。地球历史中的这一阶段被清晰地标记在富含铁元素的红色地质层中(见“生物圈,重要的地质作用者”)。在所有矿物质都被氧饱和后,即在大约24亿年前的“大氧化”时期之后,由蓝细菌和真核生物的光合作用释放的氧气水平在大气中急剧增加。当浓度接近大气的21%时,氧给光合物种带来了严重问题。

4. 氧气,光合作用的灾难?

4.1. 更多历史

       在20世纪20年代,奥托·瓦尔堡(Otto Warburg)[7]发现如果空气(含0.0408%二氧化碳)中的氧气含量从20%降低到2%[8],二氧化碳同化的净速率会从1.5倍增加到2倍,这被称为瓦尔堡效应:较高的氧气张力会抑制光照下二氧化碳的吸收。在20世纪70年代,鲍斯(Bowes),洛里默(Lorimer),奥格伦(Ogren)和托尔伯特(Tolbert)等通过18O氧同位素标记实验,证明了与二氧化碳结合的核酮糖二磷酸羧化酶也能够与氧结合[9]

4.2. RubisCO的困境:氧气 / 二氧化碳竞争

环境百科全书-碳-光合循环与光呼吸循环之间的关系
图6. 光合循环与光呼吸循环之间的关系。PG,磷酸甘油酸;PGA,3-磷酸甘油酸;RuBP,核酮糖-1,5-二磷酸。因此,光呼吸是一种分解代谢过程:消耗氧气释放二氧化碳,从而导致光合底物的损失。在这一过程中,二氧化碳被释放,但其涉及到的反应与线粒体中进行的经典呼吸作用不同。[来源:Schéma Roger Prat, in Morot-Gaudry, Dunod, 2009]

  因此,核酮糖二磷酸羧化酶除了发挥其羧化作用以外,还具有第二种作用,即加氧酶。所以RubisCO(核酮糖二磷酸羧化酶加氧酶)又被称为双功能酶(图6)。氧气和二氧化碳会在RubisCO的催化部位竞争,并参与同一分子的两种拮抗活性。

  • 二氧化碳促进RubisCO的羧化酶功能;
  • 氧气通过光呼吸过程促进加氧酶功能。

  在高浓度二氧化碳存在的条件下,RubisCO仅起羧化酶功能合成两个PGA分子(C3),这两分子PGA是Benson-Basham-Calvin循环中磷酸糖的来源。

  RuBP(C5分子)+ CO2(C1分子)→2PGA(C3分子)(羧化反应)

  另一方面,当氧气浓度高、二氧化碳浓度低时,RubisCO加氧酶作用,合成一个PGA(C3分子)和一个磷酸乙醇酸分子(或P-乙醇酸,C2分子)。

  RuBP(C5分子)+ O2 →PGA(C3分子)+ 磷酸乙醇酸(C2分子)(氧化反应)

4.3. 磷酸乙醇酸循环

环境百科全书-碳-2-磷酸乙醇酸循环
图7. 2-磷酸乙醇酸循环发生在三个不同的细胞器:叶绿体,过氧化物体和线粒体。在光呼吸反应过程中,叶绿体中形成的两分子2-磷酸乙醇酸经过脱磷酸形成两个乙醇酸分子,然后被转移到过氧化物体中,被氨化反应为两个甘氨酸分子,后被代谢分解为一分子丝氨酸,二氧化碳和NH3。后者被释放到大气中。丝氨酸返回到过氧化物酶中并被代谢为甘油酸酯,最后在叶绿体中合成PGA分子,重新参与Benson-Basham-Calvin循环中。
[来源:©Jean-François Morot-Gaudry]。Chloroplast (叶绿体),Peroxysome (过氧化物体),Mitochondria(线粒体),Glycolate(磷酸乙醇酸),Glycine(甘氨酸),Serine(丝氨酸),Glycerate(甘油酸)

       光呼吸的第一产物2-磷酸乙醇酸已被证明是本森巴萨姆卡尔文循环的强大抑制剂。大多数植物通过复杂的2-磷酸乙醇酸循环来代谢去除这种有毒复合物(也被叫作氧化光合作用碳循环或Tolbert循环),该过程在叶绿体,过氧化物体*和线粒体*三种细胞器的协同作用下进行[10]。在此循环中,两分子的2-磷酸乙醇酸被转化为一分子PGA,然后重新进入本森-巴萨姆-卡尔文循环,同时,一分子CO2和一分子NH3被释放到大气中。

  除了这些碳和氮的损失外,乙醇酸循环中也消耗了大量以NADPH和ATP形式存在的能量。但是,由于乙醇酸循环途径的开放性,光呼吸产生的大部分碳得以回收,从而限制了光合作用碳的损失(图7)。

       光呼吸主要发生在一些生长在温带的C3型光合植物中(如小麦,大麦,番茄,生菜,土豆,树木)。据估计,在25°C的正常环境条件下,即21%的氧气和0.0408%的二氧化碳时,羧化和氧合速率之比约为2.5,即光合作用同化的二氧化碳有20%通过光呼吸排放。光呼吸的重要性与环境状况密切相关:

  • 在温度和光照较强,二氧化碳浓度较低的情况下,光呼吸显得尤为重要;
  • 相反,较高的二氧化碳浓度有利于羧化反应进行。

4.4. 光呼吸:主要的适应性过程

  在超过30亿年的时间里,光合作用这一强大过程在适应地球重大环境变化的历程中一直非常稳定(见“生物圈,重要的地质作用者”)。光合作用代谢过程的演化与环境变化密切相关:

    • 在大约7亿年前,随着环境中的氧气浓度增加,二氧化碳/氧气比率急剧下降,引起全球冰川作用。
    • 在占领大陆之前,这些新的环境条件为微生物和藻类RubisCO发挥功能提供了氧压[11]
  • 为了适应这些新条件,绿色谱系(陆生植物的祖先)的分支发展出了光呼吸途径,从而在4亿3千万年前开始占领大陆。
  • 一旦暴露在大气中,植物就必须应对新的进化压力,并且尝试不同的途径减少或避免光呼吸。

  因此,光呼吸在光合过程不可或缺,因为它与RubisCO本身的固有特性有关,而这些特性是在氧含量几乎可以忽略的进化年代中形成的[12]

5. RubisCO附近的二氧化碳富集

  除了C3植物之外,其它一些光合生物(蓝细菌,C4和CAM植物……)也进化出了独特的策略,以有效降低氧气对RubisCO的有害效应。最显著的策略之一就是将二氧化碳浓缩在RubisCO酶附近。

5.1. 光合细菌:在RubisCO附近建立一个二氧化碳储藏库

环境百科全书-碳-羧酶体
图8. 羧酶体是位于细菌细胞内部的微区室
[来源:©Jean-François Morot-Gaudry]。Carbonic anhydrase(碳酸酐酶),Carboxysome(羧酶体)

  光合细菌的光合作用体系定位于其细胞膜上,因此,蓝细菌内形成了一些由多面体蛋白壳构成的微区室结构,即羧酶体,其中含有参与碳固定的酶(图8)。

       这些结构使得蓝细菌可以生活在缺乏溶解性二氧化碳但富含HCO3离子的水生环境中。其限功膜上特定的高效转运蛋白捕获碳酸氢根(HCO3),并被碳酸酐酶*这样一个特定的酶转化为二氧化碳。这种机制使得RubisCO附近环境中形成了一个浓缩二氧化碳的胞内储存库,重现了古代地质时代原始大气环境。这降低了RubisCO的加氧酶活性进而提高羧化活性[13]

5.2. 如何将二氧化碳固定与RubisCO物理性分离?C4植物的解决方案

环境百科全书-碳-C4型代谢植物
图9. 左图表示C4型代谢植物中两种不同细胞叶肉细胞(C4)和维管束鞘细胞(C3)中的并行反应。C4循环确保二氧化碳在RubisCO附近富集,从而提高其羧化活性(Schéma Roger Prat, in Morot-Gaudry, Dunod, 2009)。PGA,磷酸甘油酸;RuBP,1,5-二磷酸核酮糖;PEP,磷酸烯醇式丙酮酸;HCO3-,碳酸氢根。右图:C4植物玉米叶的解剖示意图。浅蓝色部分:叶肉细胞的叶绿体(C4);蓝紫色部分:维管束鞘细胞的叶绿体(C3)。中心处为导管细胞。[来源:©Photo Frédéric Dubois, Université de Picardie]
图上内容:mesophyll 叶肉,Bundle sheath 鞘束, Cycle de CALVIN卡尔文循环

  有些植物,例如玉米,也已经进化出富集二氧化碳的高效机制,在叶片内部,这一机制涉及到两种不同的组织(图9):

  • 一种是围绕导管组织,位于最外围的叶肉细胞;
  • 另一种是围绕最中心的组织,维管束鞘细胞(一种非常不透水的俄罗斯套娃状的结构)。

  叶肉细胞中含有特定的羧化酶,磷酸烯醇式丙酮酸羧化酶或PEP-羧化酶,它们会催化合成四碳化合物-草酸乙酰(因此被称为光合作用或C4型植物)[14]

  PEP(C3分子)+碳酸氢盐(C1分子)→草酰乙酸(C4分子)

  在叶肉细胞的叶绿体中,草酰乙酸被转化为另一种C4化合物苹果酸,并运往维管束鞘细胞。在这里,C4化合物经过酶促脱羧之后,形成大量CO2富集在RubisCO周围,从而促进其羧化活性。之后磷酸烯醇式丙酮酸再生,以确保持久循环。

  这一机制可以将从大气中捕获CO2RubisCO中进行利用两个过程物理性地分开,但与C3植物相比也消耗了更多的ATP能量[15]

5.3. 肉质植物中的时相分离:夜间进行C4代谢,白天进行C3代谢。

  在肉质植物(仙人掌,凤梨等)以及含CAM类型(景天酸)代谢机制的植物中,CO2的富集和RubisCO的羧化功能位于同一组织。但是它们在不同的时间进行:在夜晚,C4途径活跃,确保苹果酸代谢,在白天,苹果酸代谢中释放的CO2会使C3机制变得活跃[16]。(见“长生草:植物适应环境限制的示例”)。

6. 不断变化的环境中的光合作用

6.1. 代谢类型如何促进植物适应环境变化?

环境百科全书-碳-玉米田
图10. 玉米田,一种C4植物。
[来源:Lars Plougmann / CC BY-SA 2.0]

  温度是一种重要的环境因子,并且对C3和C4植物的光合作用具有不同的影响。例如,温度高于30℃的环境,更利于本就适合生存在极为干燥环境下的C4植物和CAM植物生长。

  在强光照、高温、且水分和养料充足的条件下,C4植物几乎没有光呼吸活性,会比C3植物更高效地固定大气中的二氧化碳。例如,地球上5%的C4植物可以固定全球30%的二氧化碳。

  • 而且,要产生相同的的生物量,C4植物的袖型叶片结构可使其节省三分之一的用水量。生产1kg的玉米(C4植物,图10)面粉只需要350升水,而生产1kg的小麦(C3植物,图11)面粉却需要500升水。
  • C4植物氮动员要比C3植物少,因为PEP羧化酶使富含氮的RubisCO酶含量减少,以达到与C3植物相同的光合速率。
环境百科全书-碳-日落时的小麦田
图11. 日落时的小麦田,一种C3植物。
[来源:Lars Plougmann / CC BY-SA 2.0]

  然而在光照和温度都较低的温带地区,C4植物的光合能力差异逐渐减弱。

  此外,如果大气中的二氧化碳浓度像目前观测到的那样继续升高(见“人类活动破坏了碳循环”),在温度适宜的条件下,C3植物的光合作用有望接近C4植物。

6.2. 未来如何?

  观察显示,在未来的几十年中,植物为了适应不断变化的环境很可能会获得新的机制。

  通过深入了解植物为适应环境变化所采取的不同机制,我们能够研究如何培育出更好适应二氧化碳含量、温度及水环境等变化的植物。但在目前在研的众多项目中,尚不清楚哪些将有利和适用于大规模农业和工业应用。在“进化的光合作用”中指明了一些可能的方向。

7. 要记住的信息

  • 通过光合作用,植物和一些特定的细菌将部分太阳转化为稳定的化学能并且同时固定了二氧化碳,从而生成了生命发育所需的重要有机物分子。
  • 放射性14C用作分子标记物以及相应分析技术的发展,使破译碳代谢途径和揭示本森-巴萨姆-卡尔文循环成为可能。该循环确保了CO2碳受体的再生以及光合细胞不断改进和行使功能所必需物质(糖类,蛋白质和脂类)的合成。
  • 数十亿年来,二氧化碳的碳固定整合了本森-巴萨姆-卡尔文循环,并由光合作用特定酶——二磷酸核酮糖羧化酶(RuBP羧化酶)催化。
  • 由于地球氧气浓度的增加(在大气和海洋中),RuBP羧化酶也可以固定氧气,不仅具有羧化酶功能,还具备加氧功能,因此被称为RubisCO。
  • 加氧功能负责合成磷酸甘油酸分子,是本森-巴萨姆-卡尔文循环的强大抑制剂。进化中的植物保留下一种通过排放二氧化碳而消除2P-乙醇酸毒性的代谢途径,即光呼吸循环。
  • 其它的光合作用生物通过形成一些额外的机制发展了独特的并有效的策略,例如通过C4循环确保RubisCO附近的富含二氧化碳环境,促进其羧化作用而抑制光合作用的加氧活性。

 


参考资料及说明

感谢Dunod和 QUAE杂志授权再版这篇文章。

封面图片:[来源:©Jean-François Morot-Gaudry]

[1] 碳11(11C)是碳的同位素,半衰期为38分钟。因此,使用这种放射性同位素的实验必须非常短,因为它在几个小时后就检测不到了。它通常被用来在“正电子发射断层扫描”中标记分子。

[2] Benson, A.A. (1951) Identification of ribulose in 14CO2 photosynthesis products. Am. Chem. Soc. 73:2971-2972.

[3] Bassham, J. A., Benson, A. A., Kay, L. D., Harris, A. Z., Wilson, A. T. & Calvin, M. (1954) The path of carbon in photosynthesis. XXI. The cyclic regeneration of carbon dioxide acceptor. J.-Am. Chem. Soc. 76:1760-1770;

[4] 生物学是基于碳的化学,因为生物学研究中的电化学势,就是化学研究中化学能与电能的相互转化。它们能够同时维持四种不同的化学键,从而增加原子和分子各种组合的可能性,也增加了对生命多元进化与发展至关重要的有机分子多样性。

[5] 道尔顿(Dalton)是一个标准的测量单位,用来表示原子和分子的质量。最初被定义为碳12原子质量的1/12。由于分子的大小,千道尔顿(kDa)更多地用于生物学和生物化学中。大多数细胞分子的质量通常在20-100kDa之间。

[6] 氮是氨基酸和蛋白质的主要元素(大约占蛋白质质量的6%)。

[7] 奥托海因里希·沃伯格(1883-1970),德国内科医生、生理学家和生物化学家。获得1931年诺贝尔生理学和医学奖,“因为他发现了呼吸酶的性质和作用模式”。

[8] 目前,大气中的二氧化碳含量已超过400ppm(04%)。2019年,夏威夷的莫纳洛亚天文台记录到了超过415ppm的二氧化碳含量值。

[9] Lorimer G.H. (1981). The carboxylation and oxygenation of ribulose 1,5-bisphosphate: The primary events in photosynthesis and photorespiration. Annu.Rev. Plant Physiol. 32: 349-383.

[10] Tolbert N.D. (1997). The C2 oxidative photosynthetic carbon cycle. Annu.Rev. Plant Physiol. Plant Mol. Biol. 48: 1-25.

[11] Hagemann M., Kern R., Maurino V.G., Hanson D.T., Weber A.P.M., Sage R.F. & Bauwe H. (2016) Evolution of photorespiration from cyanobacteria to land plants, considering protein phylogenies and acquisition of carbon concentrating mechanisms. J.Exp. Bot., 67:2963-2976.

[12] Erb T.J. & Zarzycki J. (2018) A short history of RubisCO: the rise and fall (?) of Nature’s predominant CO2 fixing enzyme. Curr.Opinions. Biotechnology, 49:100-107

[13] Badger M.R., Price, G.D., Long B.M. & Woodger F.J. (2006). The environmental plasticity and ecological genomics of the cyanobacterial CO2 concentrating mechanism. J.Exp. Bot. 57: 249-265.

[14] 草酰乙酸盐迅速还原为苹果酸盐,并迁移到血管周鞘的叶绿体中。

[15] Christin P.A. & Osborne C.P. (2014) The evolutionary ecology of C4 plants. New Phytol. 204(4):765-781; Hatch M.D. & Slack C.R. (1970). Photosynthetic CO2-fixation pathways. Ann. Rev. Plant Physiol. 21: 141-162;

https://inee.cnrs.fr/fr/cnrsinfo/des-echantillons-dherbiers-revelent-les-origines-de-la-photosynthese-du-mais.

[16] Koteyeva N.K., Voznesenskaya E.V., BerryJ.O., Asaph B., Cousins A.B. & Edwards G.E. (2016) Synthesis along longitudinal leaf gradients in Bienertia sinuspersici and Suaeda aralocaspica (Chenopodiaceae). J.Exp. Bot. 67 (9): 2587-2601.

 


环境百科全书由环境和能源百科全书协会出版 (www.a3e.fr),该协会与格勒诺布尔阿尔卑斯大学和格勒诺布尔INP有合同关系,并由法国科学院赞助。

引用这篇文章: MOROT-GAUDRY Jean-François, JOYARD Jacques (2024年3月14日), 光合作用的碳代谢途径, 环境百科全书,咨询于 2024年11月21日 [在线ISSN 2555-0950]网址: https://www.encyclopedie-environnement.org/zh/vivant-zh/path-carbon-photosynthesis/.

环境百科全书中的文章是根据知识共享BY-NC-SA许可条款提供的,该许可授权复制的条件是:引用来源,不作商业使用,共享相同的初始条件,并且在每次重复使用或分发时复制知识共享BY-NC-SA许可声明。

The path of carbon in photosynthesis

photosynthese

How is the carbon from carbon dioxide – CO2 – present in the atmosphere integrated into the organic matter that makes up living organisms, the biomass? For several billion years, this process has been carried out during the biochemical stages of photosynthesis by organisms using the energy recovered from sunlight by chlorophyll. However, photosynthesis has had to adapt these mechanisms to survive the various environmental changes that have taken place over geological time scales. The accumulation -in the atmosphere- of oxygen (O2) produced during the photochemical stages of photosynthesis (see Shedding light on Photosynthesis) was one of these major events. Different original strategies have been adopted over the course of evolution, and have thus made it possible to produce an immense biodiversity of organic biomolecules that we use for food, heating, clothing, housing and health care.

1. What is photosynthesis?

1.1. Making biomass from CO2 in the air

photosynthesis scheme
Figure 1. Photosynthesis, source of biomass and oxygen. Simplified diagram representing the main reactions of photosynthesis, the products (metabolites) that result and the cellular organelles rich in lamellar systems: chloroplasts, the site of photosynthesis. [Source: © Jean-François Morot-Gaudry]
Photosynthesis, a very ancient mechanism (3.8 billion years), brings together a set of biophysical and biochemical reactions that allow chlorophyll-containing plants, algae and photosynthetic bacteria to synthesize organic molecules using the electromagnetic energy of sunlight, carbon from CO2 in the air, water and minerals in the soil (Figure 1).

Photosynthetic organisms are therefore photoautotrophic*. Photosynthesis is at the origin of most of the molecules in the food chain of living beings and the majority of the organic biomass of our Planet. Photosynthesis takes place in chloroplasts, green intracellular organelles a few micrometers in size that contain the photosynthetic machinery (see Shedding light on Photosynthesis). The simplified equation for photosynthesis can be written as follows:

CO2 + H2O + light energy → energy-rich carbon molecules + O2

Photosynthesis fixes 115 to 120 billion tons (or Gigatons) of carbon each year from CO2 in the air, including 60 for the continents. To achieve this, plants use a very small part (about 1-2%) of the solar energy reaching our planet. On a global scale a power of about 130-140 terawatts (1 terawatt = 1012 watts) is used, which is about six times the energy consumption of mankind. How do photosynthetic organisms achieve this?

1.2. Photosynthesis is divided into two phases

  • a very fast photochemical phase that takes place in the membrane system of the chloroplasts, the thylakoids (Figures 1 & 2).

photosynthesis phases - Benson-Bassham-Calvin Cycle
Figure 2. The two phases of photosynthesis (i) the photochemical phase: production -from sunlight energy- of NADPH reducing power and ATP; (ii) and the biochemical phase: fixation of CO2 carbon and synthesis of organic compounds: carboxylation and Benson-Bassham-Calvin Cycle (BBC cycle). [Source: © Jean-François Morot-Gaudry]
During this phase, visible solar light is captured by the chlorophyll pigments of the chloroplasts. The energy acquired is then transmitted to protein/pigment complexes (photosystems) which convert, via a succession of oxidation-reduction reactions, the energy of the photons into electrical and then chemical energy stored in the form ofboth organic molecules rich in energy and reducing power (NADPH). Simultaneously, the establishment of a proton gradient on either side of the thylacoid membrane provides the energy necessary for ATP synthesis. During this process, water molecules -H2O- are the source of electrons (e), protons (H+) and oxygen (O2). This phase is thoroughly described in this encyclopedia (see Shedding light on Photosynthesis).

  • A metabolic phase, slower than the previous one, takes place in the inner liquid of the chloroplasts, the stroma (Figure 2).

The biochemical mechanisms involved in the fixation of carbon from the CO2 of the air require the presence of a carbon receptor: an enzyme that ensures this fixation and carboxylation, giving rise to organic compounds. This photosynthetic carbon metabolic pathway is known as the Benson-Bassham-Calvin Cycle.

This article focuses primarily on the description :

  • the biochemical mechanisms of photosynthesis responsible for the fixation of carbon from carbon dioxide in the atmosphere ;
  • of their evolution during changes in the environment;
  • the impact of the appearance of oxygen in the atmosphere during different geological periods.

2. How do plants fix carbon from CO2?

2.1. Some history

Jean Sénebier (see Focus Some pioneers in photosynthesis) was the first scientist having stated -as early as 1782- “that carbon dioxide CO2 is fixed under illumination by photosynthetic organisms and represents food for the plant“. From the late 18th century to the mid-1940s, the nature of the photosynthetic pathways for the assimilation of carbon from carbon dioxide (CO2) remained a mystery. It was first assumed -in the early 19th century- by J.B. Boussingault and F. Bayer, that carbohydrates could result from the combination of carbon with the elements of water, hence the first name carbohydrates was given to sugars. Most formulas representing sugars can in fact be inscribed as if they were the result of the polymerization of this fundamental molecule containing carbon and water: (CH2O)n. Subsequently, several other compounds were mentioned as the first products of photosynthesis. Examples include carbonic acid H2CO3, formic acid HCOOH, the simplest of the carboxylic acids*, etc. However, there were no experimental results to confirm these hypotheses. If the hypothesis of formic acid has been maintained for a very long time in the literature as the first product of photosynthesis, it owes this only to its disarming simplicity.

2.2. The Benson-Bassham-Calvin Cycle

  • Search for CO2 acceptor and discovery of a specific carboxylase

Figure 3. Simplified diagram of the Benson-Bassham-Calvin cycle. Representation of the steps of incorporation and reduction of the photosynthetic carbon leading to the formation of PGA phosphoglyceric acid and triose-phosphates, first photosynthetic intermediates, and to the regeneration of the CO2 acceptor, ribulose-1,5-bisphophate. [Source: Schéma Roger Prat, in Morot-Gaudry, Dunod, 2009]
First experiments using the radioactive isotope 11CO2 [1] as a marker, showed that the 11C carbon was found in a three-carbon compound, suggesting that the carbon acceptor of CO2 was a two-carbon compound. But this hypothetical compound couldn’t be identified.

It was by using 14CO2 as a radioactive tracer that Benson [2] observed that the carbon of 14CO2 binds to a more complex pre-existing carbon structure: a five-carbon phosphoryl compound, ribulose-1,5-bisphosphate or RuBP (see Focus on Deciphering the Benson-Bassham-Calvin Cycle). [3] This compound has a chemical structure favourable to the addition of a carbon (a reaction called carboxylation). This reaction results in the formation of a very unstable six-carbon compound, which is immediately metabolized into two three-carbon (C3) molecules, phosphoglyceric acid, PGA [4] (Figure 3).

The enzyme that binds the CO2 carbon to RuBP is a carboxylase*, RuBP carboxylase, later called RubisCO (see below). This specific enzyme of photosynthesis has been the gateway for carbon to enter the majority of the planet’s organic molecules for more than three billion years (see Focus RubisCO).

RubisCO, a complex enzyme of high molecular weight (550 kDa) [5], is localized in the stroma of chloroplasts where it accounts for 30-50% of soluble proteins. RubisCO is the most quantitatively important enzyme in the biosphere, and is thus the main reserve of organic nitrogen in leaves [6]. Because of its central role in autotrophy, it is considered that the presence on Earth of each human being required the formation of 5 kg of RubisCO.

  • Reduction of phosphoglyceric acid to triose-phosphates

cycle de Benson-Bassham-Calvin - photosynthese - carbone
Figure 4. Simplified diagram of the Benson-Bassham-Calvin Cycle with carbon trading. Phosphorylation reactions are not indicated, only the number of carbons in the molecules is shown [Source: © Schéma Roger Prat, in Morot-Gaudry, Dunod, 2009].
Recovering the energy of the NADPH reducing power and of ATP from the photochemical phase (see Shedding light on Photosynthesis), the three-carbon PGA molecules are reduced (they gain electrons) into triose-phosphate molecules (molecules with 3 carbons and a phosphate) and thus acquire energy. This enzymatic reduction requires one NADPH molecule and one ATP molecule per reduced PGA molecule.

  • Fate of triose-phosphate

For six molecules of triose-phosphate synthesized, only one is intended for the synthesis of carbohydrates, amino acids, lipids, etc. The other five molecules of trioses-phosphate are used to regenerate RuBP, the CO2 acceptor (Figure 4). The regeneration of a RuBP molecule has a high energy cost that requires 2 NADPH and 3 ATP per molecule but this energy is provided free of charge by the Sun.

Since the first products of this ring are three-carbon molecules, the plants using this ring have been called C3-type photosynthetic plants.

Trioses-phosphate that are not used for RuBP recycling are either (a) used in the chloroplast for the synthesis of starch, amino acids or lipids or (b) exported out of the chloroplast and transformed into sugars by the enzymes of the cytoplasm for further metabolism (see Focus Sucrose or Starch?).

  • Synthesis and transport of photosynthetic assimilates

Figure 5. Circulation of raw and phloem sap in the plant. [Source: © Jean-François Morot-Gaudry]
The products of photosynthesis, the assimilates, are transported and distributed throughout the plant by the conductive system that conducts the elaborated sap -the phloem-, which is parallel to the system that conducts the raw sap, the xylem (Figure 5). The long-distance transport of the phloem sap requires that the assimilates (sucrose, mainly amino acids) synthesized in the source organs, the leaves, are loaded into the conducting complex by an active and selective loading mechanism, then continuously discharged into the receiving organs: grains, seeds, fruits, tuberized roots and stems, etc.

2.3. What about temperature?

Temperature affects biophysical and metabolic processes differently. Biophysical processes such as light absorption by chlorophyll pigments and the formation of NADPH and ATP are not very sensitive to temperature changes. On the other hand, the biochemical reactions that cause CO2 and O2 fixation and sugar synthesis, as well as the exchange of molecules between cell compartments and organs, are highly dependent upon it. On average, a 10°C rise in temperature doubles the velocity of biochemical reactions.

In temperate regions, air and plant temperatures are subject to strong seasonal and daily variations that are parallel to the amount of solar energy reaching the ground surface. Plants can, to varying degrees, adapt to rapid daily variations in temperature, between morning and end of day for example. Rapid changes in leaf temperature usually follow variations in sunlight. In environments characterized by low temperatures, such as the alpine environment, plants have developed mechanisms that allow them to cope with these temperature variations (see How do plants cope with alpine stresses? ).

Plants can also acclimatize to long-term temperature changes. In all cases, the temperature at which maximum photosynthetic activity is observed follows the growth temperature. Acclimatization to new thermal conditions can nevertheless cause a decrease in photosynthesis in some plants.

3. Oxygen production over geological times

The first photosynthetic reactions appeared more than three billion years ago when the atmosphere was almost devoid of dioxygen O2 but composed mainly of water (H2O), carbon dioxide CO2 (10 to 15%), nitrogen dioxide (N2), and hydrogen sulfide (H2S). At that time, during the transformation of light energy into energy-containing molecules, primitive photosynthetic bacteria – the purple sulphurous bacteria like the green sulphurous bacteria – oxidized hydrogen sulphide. Photosynthesis was of an anoxygenic type.

With the appearance of the ancestors of cyanobacteriaH2O became the almost inexhaustible substrate for oxidation and the supplier of electrons and protons leading to oxygen release into the atmosphere. Photosynthesis became of the oxygenic type (see Shedding light on Photosynthesis). Presently, these two types of photosynthesis coexist:

CO2 + 2 H2S → (CH2O) + H2O + 2 S (Anoxygen photosynthesis)
CO2 + 2 H2O → (CH2O) + H2O + O2 (Oxygenic photosynthesis)

After the onset of oxygen-source photosynthesis about 2.5 billion years ago, the concentration of O2 in the atmosphere remained very low for a very long period of time due to the high capacity of crust minerals to trap oxygen in the form of iron oxide (Fe2O3). This phase in the Earth’s history is clearly marked in the red geological layers rich in this iron compound (see The Biosphere, a major geological player). After all the minerals were saturated by oxygen, i.e. after the “great oxidation” period that took place about 2.4 billion years ago, the level of oxygen released by the photosynthetic activity of cyanobacteria and eukaryotes strongly increased in the atmosphere. At concentrations close to 21% of the gaseous concentration in the atmosphere, the oxygen content has become a serious issue for photosynthetic species.

4. Oxygen, a catastrophe for photosynthesis?

4.1. More history

In the 1920s, Otto Warburg [7] observed that if the oxygen O2 content of the air (currently 0.0408% CO2) [8] is lowered by 20 to 2%, the net rate of CO2 assimilation is multiplied by a factor of 1.5 to 2. This is the so-called Warburg effect: high oxygen tensions inhibit carbon dioxyde uptake under illumination. In the 1970s, following labelling experiments using the oxygen isotope 18O, Bowes, Lorimer, Ogren and Tolbert showed that ribulose biphosphate carboxylase, the enzyme that binds carbon dioxide, is also capable of binding oxygen. [9]

4.2. Dilemma for the RubisCO: the O2/CO2 competition

Figure 6. Relationship between the photosynthetic cycle and the photorespiratory cycle. PG, phosphoglycolate; PGA, 3-phosphoglycerate; RuBP, ribulose-1-5 bisphosphate. Photorespiration is therefore a catabolic mechanism: it consumes oxygen and releases CO2, leading to a loss of photosynthetic substrates. During this process, CO2 is released, but the reactions involved bear no resemblance to those of classical mitochondrial respiratory metabolism. [Source: Schéma Roger Prat, in Morot-Gaudry, Dunod, 2009]
Ribulose biphosphate carboxylase thus exerts in addition to its carboxylase activity a second activity called oxygenase, hence the name RubisCO (Ribulose bisphosphate Carboxylase Oxygenase) attributed to this bifunctional enzyme (Figure 6). CO2 and O2 are then in competition at the catalytic sites of the RubisCO and are involved in two antagonistic activities within the same molecule:

  • Carbon dioxide promotes the carboxylase function of the RubisCO ;
  • Dioxygen promotes the oxygenase function through a process called photorespiration.

In the presence of a high concentration of CO2, RubisCO functions only as a carboxylase leading to the synthesis of two PGA molecules (C3 molecules), which are the origin of the phosphorylated sugars formed by the Benson-Bassham-Calvin ring.

RuBP (C5 molecule) + CO2 (C1 molecule) → 2 PGA (C3 molecule) (carboxylation reaction)

On the other hand, in the presence of a high concentration of O2 and a low concentration of CO2, RubisCO gives rise to a PGA molecule (C3 molecule) and a molecule with two carbon atoms, the phosphoglycolate (or P-glycolate).

RuBP (C5 molecule) + O2 → PGA (C3 molecule) + P-glycolate (C2 molecule) (Oxygenation reaction)

4.3. The 2P-glycolate Cycle

Figure 7. The 2P-glycolate cycle includes three different cellular organelles: chloroplasts, peroxisomes and mitochondria. Two molecules of 2P-glycolate formed in chloroplasts during photorespiration are dephosphorylated into two glycolate molecules, which are transferred into peroxisomes and aminated into two glycine molecules metabolized into one serine molecule, NH3 and CO2, the latter returning to the atmosphere. The remaining serine returns to the peroxisomes where it is metabolized to glycerate and finally to PGA in the chloroplast, reintegrating the Benson-Bassham-Calvin cycle. [Source: © Jean-François Morot-Gaudry]
The first product of photorespiration, 2P-glycolate has been shown to be a powerful inhibitor of the Benson-Bassham-Calvin cycle. The majority of plants got rid of this toxic compound by metabolizing it via a complex pathway, the 2P-glycolate cycle (also known as the oxidative photosynthetic carbon cycle or Tolbert cycle), which involves the cooperation of three cellular organelles, the chloroplast, the peroxisome* and the mitochondrion*. [10] During this cycle, two molecules of 2P-glycolate are transformed into a PGA molecule reintegrated into the Benson-Bassham-Calvin Cycle, while one molecule of CO2 and one molecule of ammonia (NH3) are emitted into the atmosphere.

In addition to these carbon and nitrogen losses, glycolate recycling also has a significant energy cost in NADPH and ATP. However, thanks to the unfolding of the glycolate pathway, a large part of the carbon from photorespiration is eventually recovered, thus limiting the loss of photosynthetic carbon (Figure 7).

Photorespiration is mainly expressed in plants growing in temperate regions (wheat, barley, tomato, lettuce, potato, trees), photosynthetic plants of type C3. It is estimated that at 25°C, under normal environmental conditions, i.e. 21% oxygen and 0.0408% CO2, the ratio between carboxylation and oxygenation rates is about 2.5, i.e. the emission of photorespiratory CO2 corresponds to about a 20% loss of photosynthetic CO2 assimilation. The importance of photorespiration is very much linked to environmental conditions:

 

  • Photorespiration is all the more important as the temperature and the illumination are high and the CO2 content of the atmosphere is low;
  • Conversely, high CO2 concentrations favour carboxylation.

4.4. Photorespiration: a major adaptive process

For more than 3 billion years, photosynthesis, a very robust process, has been very stable while adapting to the major environmental changes that the planet has undergone (see The Biosphere, a major geological player). The evolution of photosynthetic metabolism is tightly associated with changes in the environment:

  • As the oxygen content of the atmosphere increased, the CO2/O2 ratio decreased dramatically and caused global glaciation about 700 million years ago.
  • These new conditions induced a high oxygen pressure on the functioning of RubisCO in microorganisms and algae, prior to the colonization of the continents. [11]
  • Adapting to these new conditions, the branch of the green lineage (ancestor of terrestrial plants) developed the photorespiratory pathway, which in turn enabled the subsequent colonization of the continents, some 430 million years ago.
  • Once in the open air, plants have had to cope with this new evolutionary pressure and have sought to reduce or bypass photorespiration by different strategies.

Photorespiration is thus an inevitable photosynthetic process because it is linked to the intrinsic properties of the RubisCO itself that formed during evolution at a time when the oxygen content of the environment was almost negligible [12].

5. Concentrating CO2 in the vicinity of the RubisCO

Apart from C3 plants, several other photosynthetic organisms (cyanobacteria, C4 and CAM plants…) have developed original strategies to effectively reduce the harmful effects of oxygen on RubisCO. One of the most ovious was to concentrate CO2 close to the enzyme.

5.1. Photosynthetic bacteria: creating a CO2 reservoir close to the RubisCO

Figure 8. Carboxysomes are micro-compartments located inside the bacterial cell. [Source: © Jean-François Morot-Gaudry]
The photosynthetic machinery of photosynthetic bacteria is located in their cell membranes. Thus, cyanobacteria have in their cells micro-compartments, the carboxysomes, formed by a polyhedral protein shell, containing enzymes involved in carbon fixation (Figure 8).

These structures allow cyanobacteria to live in aquatic environments that are poor in dissolved CO2 but rich in bicarbonate HCO3 ions. Specific and efficient transporters, located on their limiting membrane, capture bicarbonate (HCO3) which they transform into CO2 thanks to specific enzymes called carbonic anhydrases*. This mechanism creates an internal reservoir of concentrated carbon dioxide in the environment close to their RubisCO, thus somehow recreating the primitive atmosphere of ancient geological times. This promotes the carboxylase activity of RubisCO at the expense of the oxygenase activity. [13]

5.2. How to physically separating CO2 fixation and RubisCO? the solution of C4 plants

Figure 9. Diagram representing the juxtaposition -in two types of cells- of the C4 (mesophyll cells) and C3 (sheath cells) cycles in plants with C4 type metabolism (left). The C4 cycle enables CO2 to be concentrated in the vicinity of the RubisCO, thus promoting its carboxylase activity (Schéma Roger Prat, in Morot-Gaudry, Dunod, 2009). PGA, phosphoglyceric acid; RuBP, ribulose bisphosphate; PEP, phosphoenolpyruvate; HCO3-, bicarbonate. Right: Anatomy of a corn leaf section, a C4 plant. In light blue: chloroplasts of the mesophyll cells (C4); in blue-violet: chloroplasts of the perivascular sheath (C3). In the center, the cells of the conducting vessels. [Source: © Photo Frédéric Dubois, Université de Picardie]
Some plants, such as maize, have also developed an efficient mechanism for concentrating CO2. Internal to the sheet, this mechanism involves two different tissues (Figure 9) :

  • One surrounding the conducting vessels, the outermost tissue, the mesophyll;
  • The other one surrounding the most internal tissue, the perivascular sheath (a very impervious russian nesting dolls type of structure).

Mesophyll cells contain specific carboxylases, phosphoenol-pyruvate-carboxylases or PEP-carboxylases, which catalyze the formation of a four-carbon compound (hence the name photosynthesis or C4-type plants), oxaloacetate [14] :

PEP (C3 molecule) + Bicarbonate (C1 molecule) → Oxaloacetate (C4 molecule)

In the mesophyll chloroplast, oxaloacetate is transformed into another C4 compound, malate, and migrates into the cells of the sheath. There, after enzymatic decarboxylation of this four-carbon compound, a significant amount of CO2 accumulates in the environment close to the RubisCO, promoting its carboxylase activity. The phosphoenol-pyruvate is then regenerated to ensure the durability of the cycle.

This mechanism – which physically separates the capture of atmospheric carbon dioxide and its use by the RubisCO – has, however, an additional energy cost in ATP compared to the C3 mechanism of photosynthesis. [15]

5.3. Temporal separation in succulent plants: C4 metabolism at night and C3 during the day

In succulent plants (cacti, pineapples, etc.) or more generally plants with the CAM-type (Crassulacean acid) metabolism, the functions of CO2 concentration and carboxylation of RubisCO are located in the same tissue. But there is a temporal separation of their functioning: at night C4 metabolism is active, ensuring malate synthesis, whereas during the day C3 metabolism is active owing to CO2 released by malate decarboxylation. [16] (see Focus Joubarbe: example of a plant’s adaptation to environmental constraints).

6. Photosynthesis in a changing environment

6.1. How metabolic types favor plants adaptation to environmental changes?

champ de mais
Figure 10. Corn field, a C4 plant. [Source: Lars Plougmann / CC BY-SA 2.0]
Temperature is a key environmental factor, and has different impact on C3 and C4 plants photosynthetic activity. For instance, above 30°C, C4 plants and CAM plants adapted to very dry regions are strongly favoured.

Under high illumination and high temperatures, C4 plants -showing virtually no photorespiratory activity- are more efficient at assimilating carbon from atmospheric CO2 than C3 plants, provided that water and minerals are not limiting. For example, the 5% of C4 plant species on the planet fix 30% of the world’s CO2. And furthermore:

  • For the same biomass production, C4 plants use at least one third less water due to their sleeve leaf structure. Only 350 litres of water are needed to produce 1 kg of maize (a C4 plant, Figure 10) flour compared to 500 litres of water for 1 kg of wheat (a C3 plant, Figure 11) flour;
  • C4 plants mobilize less nitrogen than C3 plants because the efficiency of PEP-carboxylases allows to reduce the quantity of RubisCO -an enzyme very rich in nitrogen-, to reach the same photosynthetic activity as C3 plants.

champ de ble
Figure 11. Wheat field, a C3 plant, at sunset. [Source: Dreamy Pixel / CC BY 4.0]
In temperate regions, however, where light and temperature are lower, this difference in the photosynthetic capacity of C4 plants fades.

Moreover, if the concentration of CO2 continues to rise in the atmosphere as it is currently observed (see A carbon cycle disrupted by human activities), C3 plants are expected to reach photosynthetic activities approaching those of C4 plants provided that temperatures remain moderate.

6.2. And in the future?

This observations suggests that, over the coming decades, plants will most likely acquire mechanisms for adaption to their changing environment.

Our better knowledge of the different mechanisms by which plants adapt to environmental changes allows us to consider developing plants that could be better adapted to rapid changes in CO2 content, temperature rise, water availability, etc. Of the many research projects currently underway, it is not yet known which of them will prove to be profitable and suitable for large-scale agricultural or industrial application. The focus Improving photosynthesis? presents some possible directions.

7. Messages to remember

  • Through photosynthesis, plants and certain bacteria convert part of the sunlight into stable chemical energy and simultaneously fix the carbon dioxide CO2, so as to elaborate all the organic molecules necessary for the development of life.
  • The use of radioactive 14C as a molecular marker and the development of analytical techniques have made it possible to deciphering the carbon metabolic pathway  and to highlight the Benson-Bassham-Calvin Cycle. This cycle ensures the regeneration of the carbon acceptor of CO2 and the synthesis of the elementary molecules at the origin of sugars, proteins and lipids necessary for the elaboration and functioning of photosynthetic cells.
  • The carbon fixation of CO2 which integrates the Benson-Bassham-Calvin Cycle has been catalyzed for several billion years by a specific enzyme of photosynthesis, ribulose bisphosphate carboxylase (RuBP carboxylase).
  • As a result of the increase in the planet’s oxygen content (in the atmosphere and the oceans), the RuBP carboxylase has also fixed oxygen, thus manifesting not only a carboxylase function but also an oxygenase function, hence its name RubisCO.
  • The oxygenase function is responsible for the synthesis of a phospho-glycolate molecule, a powerful inhibitor of the Benson-Bassham-Calvin Cycle. Plants in the course of evolution have retained a metabolic pathway that eliminated 2P-glycolate with CO2 emission, hence the name photorespiratory cycle.
  • Other photosynthetic organisms have developed more original and effective strategies by creating additional mechanisms, like the C4 cycle, which ensures a CO2-rich environment around the RubisCO, more favourable to carboxylation and thus minimizing the oxygenase activity that inhibits photosynthesis.

Notes and References

We thank Editions Dunod and QUAE for having authorized us to reproduce figures for this article.

Cover image. [Source: Photo © Jean-François Morot-Gaudry]

[1] Carbon 11 (11C) is an isotope of carbon with a half-life of 20.38 minutes. Experiments using this radioactive isotope must therefore be very short because it can no longer be detected after a few hours. It’s commonly used to mark molecules in ” positron emission tomography ».

[2] Benson, A.A. (1951) Identification of ribulose in 14CO2 photosynthesis products. J. Am. Chem. Soc. 73:2971-2972.

[3] Bassham, J. A., Benson, A. A., Kay, L. D., Harris, A. Z., Wilson, A. T. & Calvin, M. (1954) The path of carbon in photosynthesis. XXI. The cyclic regeneration of carbon dioxide acceptor. J. Am. Chem. Soc. 76:1760-1770;

[4] Biology is based on the chemistry of carbon, because of its electrochemical potential, i.e. the part of chemistry that studies the reciprocal transformations of chemical energy and electrical energy. This very high potential proves capable of maintaining four different chemical bonds at the same time, which makes it possible to multiply the various possibilities of atomic and molecular combinations, sources of the diversification of organic molecules essential to the various processes of evolution and development of life.

[5] Dalton is a standard unit of measurement, used to express the mass of atoms and molecules. Initially defined as 1/12 of the mass of a carbon 12 atom. The kilodalton (kDa) is much more used in biology and biochemistry because of the size of the molecules. Most cellular molecules typically have a mass between 20 and 100 kDa.

[6] Nitrogen is a major component of amino acids and proteins (about 6% of the mass of a protein).

[7] Otto Heinrich Warburg (1883-1970), German physician, physiologist and biochemist. Winner of the 1931 Nobel Prize in Physiology or Medicine “for his discovery of the nature and mode of action of the respiratory enzyme.”

[8] Currently, the level of CO2 in the atmosphere has exceeded 400 ppm (0.04%). Values above 415 ppm were recorded throughout 2019 at the Mauna Loa Observatory in Hawaii.

[9] Lorimer G.H. (1981). The carboxylation and oxygenation of ribulose 1,5-bisphosphate: The primary events in photosynthesis and photorespiration. Annu. Rev. Plant Physiol. 32: 349-383.

[10] Tolbert N.D. (1997). The C2 oxidative photosynthetic carbon cycle. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48: 1-25.

[11] Hagemann M., Kern R., Maurino V.G., Hanson D.T., Weber A.P.M., Sage R.F. & Bauwe H. (2016) Evolution of photorespiration from cyanobacteria to land plants, considering protein phylogenies and acquisition of carbon concentrating mechanisms. J. Exp. Bot., 67:2963-2976.

[12] Erb T.J. & Zarzycki J. (2018) A short history of RubisCO: the rise and fall (?) of Nature’s predominant CO2 fixing enzyme. Curr. Opinions. Biotechnology, 49:100-107

[13] Badger M.R., Price, G.D., Long B.M. & Woodger F.J. (2006). The environmental plasticity and ecological genomics of the cyanobacterial CO2 concentrating mechanism. J. Exp. Bot. 57: 249-265.

[14] Oxaloacetate is rapidly reduced to malate which migrates into the chloroplasts of the perivascular sheath.

[15] Christin P.A. & Osborne C.P. (2014) The evolutionary ecology of C4 plants. New Phytol. 204(4):765-781; Hatch M.D. & Slack C.R. (1970). Photosynthetic CO2-fixation pathways. Ann. Rev. Plant Physiol. 21: 141-162; https://inee.cnrs.fr/fr/cnrsinfo/des-echantillons-dherbiers-revelent-les-origines-de-la-photosynthese-du-mais.

[16] Koteyeva N.K., Voznesenskaya E.V., BerryJ.O., Asaph B., Cousins A.B. & Edwards G.E. (2016) Synthesis along longitudinal leaf gradients in Bienertia sinuspersici and Suaeda aralocaspica (Chenopodiaceae). J. Exp. Bot. 67 (9): 2587-2601.


环境百科全书由环境和能源百科全书协会出版 (www.a3e.fr),该协会与格勒诺布尔阿尔卑斯大学和格勒诺布尔INP有合同关系,并由法国科学院赞助。

引用这篇文章: MOROT-GAUDRY Jean-François, JOYARD Jacques (2020年3月4日), The path of carbon in photosynthesis, 环境百科全书,咨询于 2024年11月21日 [在线ISSN 2555-0950]网址: https://www.encyclopedie-environnement.org/en/life/path-carbon-photosynthesis/.

环境百科全书中的文章是根据知识共享BY-NC-SA许可条款提供的,该许可授权复制的条件是:引用来源,不作商业使用,共享相同的初始条件,并且在每次重复使用或分发时复制知识共享BY-NC-SA许可声明。