Biofuels: is the future in microalgae?

PDF
culture microalgues photobioreacteurs - encyclopedie environnement

Are we at the end of fossil fuels (coal, gas, oil) and will we know how to do without them? What alternatives are we considering? Human societies depend on hydrocarbons extracted from soil, for a multitude of applications that are sometimes ignored. There is of course the need for gasoline or kerosene for our vehicles on roads, oceans, in the air… While there are convincing solutions for running cars without gas, it is often said that the last drop of oil will be used to fly an aircraft. Fossil hydrocarbons are also a source of compounds for the chemistry – or petrochemistry – from which plastics and all kinds of materials are made, but also for the tars that cover our roads, polyurethane foams and insulation products for our buildings. What is the state of research to develop biofuels? How do we anticipate these new bio-based industrial sectors?

ressources fossiles - charbon - mines kayenta - sables bitumineux - petrole mer irlande - encyclopedie environnement
Figure 1. Exploitation of fossil resources. A: Coal extracted from the Kayenta mines, Arizona, USA [Photo by Peabody Energy, Inc. (CC BY 3.0), via Wikimedia Commons]; B, Oil Sands Development in Alberta, Canada [Photo by Howl Arts Collective (Flickr: tar sands, Alberta) (CC BY 2.0), via Wikimedia Commons]; C, Irish Sea Gas and Oil Production Platforms [Source: Photo by Ian Mantel (CC BY-SA 4.0), from Wikimedia Commons].
The exploitation of coal, crude oil and natural gas fields (Figure 1) has an environmental cost that is no longer sustainable. The exhaustion of these so-called “fossil” resources is announced, but it is still a long way off, at least several decades away. Coal has become expensive to extract in many countries, but there are still mining regions in operation. The price of oil, which also indexes the price of natural gas, is not yet dictated by scarcity or shortage and it is still possible to lower prices for geopolitical reasons. New hydrocarbon deposits are being discovered in under-explored areas such as the Arctic or offshore areas. It is possible, although expensive, to extract oil from less rich deposits such as oil sands (Figure 1B).

Some liquid hydrocarbons, shale gas, etc., seem to be possible new sources of fossil energy, but once again the environment is heavily impacted by their exploitation.

Research is therefore very active in identifying alternatives, known globally as “biofuels[1]. Why? This text provides some insight, first by examining what fossil hydrocarbons are and where they come from and by evaluating the current approaches being considered for alternatives.

1. What is a fossil hydrocarbon?

The organic compounds that make up crude oil and natural gas (hydrocarbons = carbon and hydrogen compounds) form complex mixtures, which are fairly coarsely qualified by element contents (C, H, O, etc.) and by the average lengths of the molecules present in these mixtures (Cn = number of carbon atoms):

  • The shortest carbon chains (methane CH4, ethane C2H6, propane C3H8 and butaneC4H10) are all gases.
  • Longer chains, up to C18H32, are liquid and chains exceeding 19 carbons are solid at room temperature.

Figure 2. Representation of the operation of a petroleum distillation column. The most volatile molecules (butane gas, for example) are recovered at low temperature at the top of the column; the heaviest fractions are used for bitumen; they are recovered at the base of the column. [Source: © Eric Maréchal; Unknown photograph. [GFDL or CC-BY-SA-3.0], via Wikimedia Commons]
These molecules of different lengths can therefore be separated by a distillation process, which is the basis of crude oil refining (Figure 2). Distillation is a process for separating mixtures of liquid substances with different boiling temperatures. It allows the components of a homogeneous mixture to be separated. Chains of lengths less than C8 are easily vaporizable, forming liquids called naphtha, and can be used for solvating applications (solubilizing compounds that do not dissolve in aqueous media). Chains up to C12 have a lower boiling point than water.

Hydrocarbons release energy when burned, and are therefore used as “fuels” for all kinds of engines. Combustion is an exothermic chemical reaction; that is, it is accompanied by the production of energy in the form of heat. Chemical combustion reaction can only occur if three elements are combined: a fuel, an oxidizer, and an activation energy in sufficient proportion. Constraints are then imposed by the types of engines depending on the hydrocarbon to be used. [2]

Automotive fuels, for example, operate at temperatures above 100°C. For these fuels an octane number has been defined by measuring the resistance in an engine controlled by self-ignition, i.e. without spark plug intervention. An octane number x means that the fuel behaves like a mixture of x% octane (C8H18, resistant to self-ignition), and (100-x)% heptane (C7H16, which self-ignites easily). According to this definition, the octane number of a pure C8H18 solution is 100 and that of a pure C7H16 solution is 0. This index is optimized for the performance of an engine, and does not reflect the amount of energy contained. In other words, a fuel is qualified according to the engine that has been developed for its combustion.

Aircraft engines, on the other hand, are subject to very different pressure and temperature conditions. “Kerosene” is defined in section C12-C15, followed by “diesel” and heavy fuels (Figure 2). The latter do not vaporize at room temperature. Chains longer than C20, solid, make up the “paraffins“, “tars” and “asphalt” (Figure 2). There is an octane number for non-linear hydrocarbons, also containing aromatic rings. This index increases in the following order: linear long-chain alkanes < linear short-chain alkanes < alkenes (containing oxygen) and cycloalkanes (naphthenes) < branched alkanes and aromatic hydrocarbons. The properties sought for kerosenes are their purity, boiling point and low risk of explosion, low freezing point and high octane number.

Coal differs from crude oil and gas in that it is a solid form that is richer in carbon, following a transformation from lignite, coal and anthracite (three types of sedimentary rocks found in mines, which are increasingly rich in carbon). This slow process, which depends on temperature, pressure and oxidation-reduction, is called carbonization.

2. From biomass to fossil fuels

2.1. Fossil fuels are essentially of biological origin

fossile plante charbon - charbon - fossile plante - carbonifere - encyclopedie environnement
Figure 3. Plant fossil in a Carboniferous coal piece. [Source: Photo by James St. John [CC BY 2.0], via Wikimedia Commons]
Hydrocarbons found in porous rocks and coals are derived from deposits of living organic matter, mainly plants, for about 400 million years] (see Crude oil: evidences for its biological origin). After sedimentation, the plant debris accumulated on a geological scale is gradually transformed by exposure to specific conditions of temperature, pressure, oxidation, etc., resulting in the deposits currently being exploited. The Carboniferous (about -360 to -300 million years ago) is known to be a geological stage rich in coal, and Jurassic (about -200 to -145 million years) and Cretaceous (about -145 to -65 million years) are known to be stages rich in oil fields… All these hydrocarbons burned massively every day by human activities therefore correspond to a biomass slowly accumulated over hundreds of millions of years – hundreds of millions of years ago – thanks to the photosynthesis that characterizes plants.

2.2. The energy of plant biomass comes from photosynthesis

Living matter (biomass) is built from organic matter (sugars, lipids, nucleotides, amino acids, etc.) that is derived entirely from glucose molecules produced by photosynthesis. In the ecological pyramid, organic matter enters through this sugar produced by plants, then called “primary producers” (see What is biodiversity?).

Two phases characterize photosynthesis (“photo-” for the first phase which takes place in light and “-synthesis” for the second phase which takes place afterwards), and allow solar energy to be captured and accumulated in organic matter.

  • In the first phase, solar light energy is captured, then by a process that “breaks” a water molecule by releasing oxygen (O2), this energy is converted into two types of energy-rich molecules, ATP (adenosine triphosphate), which is the best known, and NADPH (nicotinamide adenine dinucleotide phosphate) which carries what is called a “reducing power”.
  • In the second phase of photosynthesis, thanks to this ATP and NADPH, CO2 from the atmosphere is captured and reduced (thanks to the reducing power of NADPH) to triose-phosphate (a 3-carbon phosphorylated molecule), precursor of glucose, a sugar of global elemental composition C6H12O6.

Metabolism” includes all the chemical reactions that, from this glucose, make it possible to synthesize all the molecules in living organisms. All the organic matter, all the biomass produced in this way is rich in both carbon and energy.

When an organism feeds on biomass, it feeds on matter but also on this solar energy, which it needs for all its biological functions. By “breaking” the material through a cellular process called “respiration“, a process that requires O2, the cells recover part of this stored energy and recycle it again into ATP and reductive power. In doing so, breathing naturally releases CO2.

As a result, photosynthesis captures solar energy and integrates it into CO2 by synthesizing C6H12O6 glucose, and respiration can recover some of this energy by releasing CO2. The oxidation process of C6H12O6, using O2  and releasing CO2, is comparable to combustion, which releases energy in the form of heat. It is sometimes said that respiration “burns” sugars.

2.3. The combustion of fossil fuels, a massive source of CO2: a small calculation…

Considering that a tree captures CO2 through photosynthesis and loses part of it through respiration, it can be estimated very roughly that it takes 2 kg of atmospheric CO2 to produce 1 kg of dry plant biomass. Considering that CO2 represents between 300 and 400 ppm (parts per million) of the atmosphere, it can be estimated that it takes about 3.5 tonnes of air to produce 1 kg of biomass. With a density between 1.1 and 1.2 kg/m3, it is therefore necessary to have the CO2 present in an air volume represented by a cube of 15 m on each side to produce 1 kg of biomass.

chene - arbre - arbre biomasse - encyclopedie environnement
Figure 4. Remarkable oak. It takes 2 kg of atmospheric CO2 to produce 1 kg of the tree’s biomass, but burning one kg of its dry wood releases CO2 reaching the natural content contained in more than 3000 m3 of air! The dry weight of this oak must be about 20 tons; its combustion will release the same amount of CO2 as that contained in about 60 million m3 of air! [Source: Photo by Larry D. Moore [CC BY-SA 3.0 or GFDL], from Wikimedia Commons]
The result of this simple calculation is among the most wonderful to describe the uniqueness and importance of the plant world in the biosphere. All living matter comes from this extraordinary performance of plant cells that capture an extremely minor gas from the atmosphere, CO2, to make it a solid that accumulates in sediments. The other side of this wonder is that when we burn 1 kg of wood, we release CO2 reaching the natural content contained in more than 3000 m3 (see The Biosphere, a major geological player) (Figure 4).

If it is a question of burning recently collected wood, the CO2 emitted mostly compensates the CO2 captured a short time ago by photosynthesis, and we can consider that this balance is neutral. But when we burn fossil fuels, we release atmospheric CO2 into the atmosphere that had been slowly trapped for hundreds of millions of years. The atmosphere is enriched with CO2 from the Carboniferous, Jurassic and Cretaceous periods, which is in addition to all other industrial sources of CO2 and contributes significantly to climate change.

3. Developing biofuels: which bio-resources, which bio-molecules?

In addition to massive CO2 emissions, the use of fossil fuels produces various types of pollution: toxic effluents and gaseous residues produced during refining, heavy metals, carbon oxides, nitrogen oxides, soot and fine particles, etc. (see Air Pollution). Concerning crude oil derivatives, pollution by imputrescible plastics is the most visible (see Plastic pollution at sea: the seventh continent) while small molecules are also released into the environment in the form of endocrine disruptors that affect all living organisms. Emissions of polluting molecules and greenhouse gases must naturally be assessed for biofuels. Clearly, even if we are actively seeking alternatives to fossil fuels, biofuels may not solve all the questions raised.

Could we do without fossile fuels and in particular crude oil? Even if it is possible to fly a light-weight aircraft using solar energy, it is currently unthinkable to carry dozens, a fortiorihundreds, of passengers without kerosene. Finding alternatives also requires developing solutions to all oil derivatives, and in particular petrochemicals. The development of a chemistry that respects sustainable development and ensures the environmental balance of the environment in which it operates is called green chemistry, sustainable chemistry or renewable chemistry. However, these petrochemical alternatives do not guarantee a low environmental impact, and a major challenge that also applies to green chemistry is that it complies with environmental standards. We cannot therefore talk about “biofuel” without talking about “green chemistry“.

3.1. Bio-resources

  • Cultivated plants?

cultures sucres - production biocarburants - biocarburants - encyclopedie environnement
Figure 5. Example of crops producing sugars (sugar cane, left) or lipids (rapeseed, right) that can be used to produce biofuels. [Source: left, by Phil (Flickr: Sugar Cane 2) (CC BY 2.0), via Wikimedia Commons; right, Photo by Myrabella / Wikimedia Commons]
It was initially envisaged to simply convert part of agriculture for this need into biofuels [3]. Two main types of biochemical compounds are considered for this application: sugars and lipids (see below). Agricultural production in countries such as Brazil has been moving in this direction, producing sugar cane for biofuels (Figure 5).

plantes oleagineuses - Jatropha curca - Crambe abyssinica - encyclopedie environnement
Figure 6. Oilseed plants suitable for biofuel production. A, Jatropha curca: A1, plant with fruit. Photos: A1, (CC-BY-SA-2.5); A2, by Frank Vincentz [GFDL or (CC-BY-SA-3.0)], from Wikimedia Commons; A3, biodiesel bottle made from Jatropha seeds, by Biswarup Ganguly [GFDL or (CC BY 3.0)] from Wikimedia Commons; B, Oil palm : B1, planting in Malaysia by Craig [Public domain], from Wikimedia Commons; B2, oil palm fruits by oneVillage Initiative (Jukwa Village & Palm Oil Production, Ghana) [CC BY-SA 2.0], via Wikimedia Commons); C, Crambe abyssinica by Kurt Stüber [1] [GFDL or (CC-BY-SA-3.0)], via Wikimedia Commons. Of these three plants, only the culture of Crambe abyssinica could be endurable for the environment.
Edible oilseed species such as rapeseed (Figure 5B), oil palm (Figure 6B) or lesser-known species such as camelina or jatropha (Figure 6A) have been evaluated by going as far as testing in addition to automotive fuels or kerosene for aviation. However, the need for animal and human food does not allow such a development model. The environmental cost in terms of destroyed natural areas, fertilizers, pesticides, etc., is not sustainable [4]. For example, it is now established that it will not be possible to envisage agricultural production dedicated to biofuels in competition with agriculture for food.

A first compromise was proposed by exploiting plants growing in non-cultivated areas, for example Crambe abyssinica, a mustard-like plant that uses little water or fertilizer (Figure 6C). A second highly developed track aims to exploit agricultural residues (ranging from straw or stubble, to wood waste, animal waste, crop residues, etc.). These agricultural residues can be produced from scratch and treated with waste, in order to extract energy from them through a gasification process (see below).

  • Microalgae and microorganisms?

diatomee- phaeodactylum tricornutum
Figure 7. Three-dimensional reconstruction of a diatom, Phaeodactylum tricornutum. [Source: photo © Denis Falconet, LPCV, CNRS Photo Library]
Since they do not compete with agricultural areas dedicated to food, microalgae, mainly oil-yielding, are evaluated by many research laboratories and many industrial actors. The biodiversity of microalgae is unparalleled, ranging from single-celled organisms derived from so-called “simple” endosymbiosis (green algae, red algae) to organisms derived from the complex assembly of several cells distant in evolution (see Symbiosis and evolution: the origin of the eukaryotic cell), following a process of “multiple” endosymbiosis (e.g. diatoms, Figure 7). Some of the species currently under consideration include Chlorella and Scenedesmus (green algae), Nannochloropsis (secondary endosymbionte).

bassin culture microalgues - encyclopedie environnement
Figure 8. Open pool used for the culture of microalgae. The water is constantly kept in motion by a motorized paddle wheel. [Source: Photo by JanB46 [CC BY-SA 3.0], from Wikimedia Commons]
To achieve a viable industry, it is also necessary to develop all the equivalent of agriculture: algae farming. It is therefore necessary to evaluate outdoor cultivation systems (open ponds, Figure 8) [5],[6] subject to climatic hazards, contamination, etc., or closed systems (photobioreactors or “PBR”) [7],[8] Growing microalgae is a water management issue, which should therefore be considered in wastewater treatment schemes. Growing microalgae is also a matter of managing phosphate and nitrogen inputs, as in agriculture. It is also a question of bringing in CO2, for example from emitting industries such as the cement industry. It is also necessary to collect and extract molecules rich in energy.

3.2. Bio-molecules

  • Sugars were initially considered because of their fermentation into ethanol (bio-ethanol) by yeasts. The simplest sugars, or fermentable sugars, from sugar cane or beet were therefore exploited (Figure 9). The bioethanol produced in this way can be mixed with fossil hydrocarbons but in a low content, as the engines are damaged by this biofuel. Bioethanol has helped to encourage the development of all biofuels because it illustrates their feasibility in concrete terms, since cars circulate every day with a share of agro-ethanol (lead-free premium fuel with 10% ethanol SP95-E10) [9].
Figure 9. Three-dimensional representation of sugar-based compounds that can be used to produce biofuels: the alcoholic fermentation of sucrose (produced by sugar cane or beet) or glucose allows the production of ethanol or bioethanol. Black balls: carbon atoms; red balls: oxygen atoms; white balls: hydrogen atoms.

As indicated above, agro-resources are no longer considered viable [10]. Other sugars are actively sought: for example, those that are polymerized in the unused rigid parts of plants, cellulose. These sugars are assembled together, in the form of polymers, which must be undone to release the simple sugars. For this recent discipline of biochemistry, we speak of “deconstruction”. These sugar polymers are associated with molecules that are very difficult to deconstruct such as lignin. We talk about the lignocellulosic chain as a new way to move towards bioethanol [11]. Microalgae are considered for molecules richer in energy and with a greater potential in green chemistry: lipids.

  • Lipids are the most promising class of biomolecules, on which efforts are the most important to date. We are talking about plants or oil-yielding microalgae. They are actually glycerolipids, molecules rich in long chains of carbon called fatty acids. The variable lengths of fatty acids recall the variable lengths of fossil hydrocarbons described above (in 1). The fatty acids initially produced in plants and oilseeds have lengths ranging from 14 to 18 carbons (C14 to C18), with some traces of C12, but they can also reach lengths of C20 to C24 and more. Lipids containing 3 fatty acids are called triacylglycerols, and form what is called oil.
Figure 10. Triacylglycerols in algae or oilseeds release fatty acids by transesterification. These fatty acids (in fact methyl esters of fatty acids) form a biofuel close to petroleum. Black balls: carbon atoms; red balls: oxygen atoms; white balls: hydrogen atoms.

By a chemical transesterification reaction, it is possible to release these fatty acids, forming a bio-fuel close to oil (Figure 10) [12]. As with liquid fuels, special oil properties are required for engines, especially aircraft engines. Basically, palm oil is solid at room temperature and becomes fluid and liquid at high temperature, which is what is required for bio-kerosene. Research is therefore aimed at optimizing this type of property in oil, looking for short fatty acids and with as few double bonds as possible. However, such an oil is not always well tolerated by the plant or oil microalgae, and the biomass obtained is not sufficient. One of the major challenges in this field is therefore to identify a biological system that produces in mass an oil that can be used as an alternative to crude oil.

  • Figure 11. A. Schematic representation of a device for the production of syngas by pyrolysis from biomass. B. Biomass gasification plant in Güssing, Austria. [Source: © Eric Maréchal; right photo: Creative Commons Attribution 2.5 Generic]
    Finally, raw biomass is also considered. In waste treatment processes, several types of conversion are considered, by biochemical, chemical or thermochemical means. This is an entire field of technological developments that are often separated from biofuels, but which is worth recalling here. A process currently being developed consists of converting dry biomass into gas, called “syngas“, for example by pyrolysis and/or gasification (Figure 11) [13]. The composition of the syngas varies according to the biomass used and the production process. Considered to be of inferior quality, it was known at the beginning of the 20th century as manufactured gas or mains gas. Here again, the mixing of biomass with fossil coal is also considered in co-combustion processes.

There is no single, ideal solution today. In any case, it is necessary to understand how the developed agronomic or biotechnological brick fits into a larger general scheme, also to be built. We then speak of sectors.

4. Tomorrow’s energy sectors coupled with agronomic, biotechnological and green chemistry sectors

The research carried out today concerns bioresources (with a significant effort on microalgae), cultivation methods, harvesting and extraction processes and finally the conversion of extracted biomolecules into ready-to-use biofuels [14].

With regard to bioresources, the question of directed evolution or production of genetically modified organisms arises. Concerning cultivation methods, the coupling with water management systems and carbon-emitting industries is being studied [15]. Environmental impact, input use (phosphate, nitrogen), overall energy balance and sustainability are assessed in so-called life cycle assessments.

Figure 12. Process for the production of biofuels from biomass from microalgae. [Source: © Eric Maréchal]
As with any renewable energy, biofuel production is inefficient. However, it has the advantage of being able to store energy in the form of biomass, which can be integrated into the energy mix coupled with non-storable energy production technologies. For example, wind turbines produce electricity when there is wind or photovoltaic cells when there is sunlight, electricity that is not well stored. It is possible that this electricity could be used to illuminate microalgae culture parks, for storage that is certainly low yield, but still in the form of biomass. Today this type of coupling is considered with a treatment of microalgae by hydrothermal liquefaction [16].

Biomass can also be subject to refining [17], separating biomolecules for biofuels (e.g. oils), pigments for cosmetic or biomedical applications, or proteins for animal production. Today, extraction systems are destructive, but this model is considered a way to reduce production costs.

In conclusion, biofuels are not yet ready to support a viable economic system [18]. The research aims to increase qualities, yields, processes, in the sense of economic viability. Given the environmental cost of fossil fuels, biofuels are not an option, but a necessity, for which the best solutions and trade-offs will have to be found. In this regard, the development of algae-based biofuels is one aspect of the implementation of algae-based solutions for agri-food, animal nutrition, cosmetics, biomedicine and green chemistry [19].

5. Messages to remember

  • The exploitation of coal, crude oil and natural gas fields has an environmental cost that is no longer sustainable.
  • Biofuels are being actively researched as possible alternatives to fossil fuels, but they are not ready to support a viable economic system.
  • The resources used to produce biofuels are of two types: cultivated plants (e.g. beetroot, rapeseed, sugar cane, oil palm) and microorganisms, particularly microalgae.
  • It is not possible to envisage agricultural production dedicated to biofuels in competition with agriculture for food.
  • Two main types of biochemical compounds are considered for biofuel production: sugars (for ethanol production) and lipids (for fatty acid methyl ester production).
  • Raw biomass can also be used to produce syngas, for example by pyrolysis and/or gasification.
  • Research carried out for the development of biofuels concerns bioresources (with a significant effort on microalgae), cultivation methods, harvesting and extraction processes and finally the conversion of extracted biomolecules into ready-to-use biofuels.
  • These systems must be designed to limit the impact on the environment, with an assessment of the overall energy balance and sustainability.
  • The development of algae-based biofuels is one aspect of the implementation of algae-based solutions for food, animal nutrition, cosmetics, biomedicine and green chemistry.

 


References and notes

Cover image. Microalgae cultures in photobioreactor (Phaeodactylum, in brown and Nannochloropis, in green). [Source: © Photo LPCV (CEA/CNRS/UGA/INRA)]

[1] Biofuels are fuels derived from the processing of plant materials (plants, algae, etc.). When the latter are produced by agriculture (beet, rapeseed, sugar cane, sunflower, oil palm…), we also speak of agrofuels. Biofuels are considered a renewable energy source. Directive 2003/30/EC of the European Parliament and of the Council of 8 May 2003 on the promotion of the use of biofuels or other renewable fuels for transport defines biofuels as “a liquid or gaseous fuel used for transport and produced from biomass“. Biomass being “the biodegradable fraction of products, waste and residues from agriculture (including plant and animal substances), forestry and related industries, as well as the biodegradable fraction of industrial and municipal waste“, Official Journal No L 123 of 17/05/2003 p. 0042 – 0046.

[2] These constraints are also important for biofuels.

[3] The production of biofuels of the agrofuel type is not without environmental impact, sometimes major. The production targets set by Europe have also been reduced, with the obligation to certify production and apply sustainability criteria. While agrofuel production is part of a sustainable development trajectory, it is inherently sustainable only under certain production conditions.

[4] de Cara S., Goussebaile A., Grateau R., Levert F., Quemener J., Vermont B. (2012) Revue critique des études évaluant l’effet des changements d’affectation des sols sur les bilans environnementaux des biocarburants. Etude réalisée par l’INRA pour l’Ademe ; http://www.ademe.fr/sites/default/files/assets/documents/effet-changements-affectation-sols-sur-bilans-environnementaux-biocarburants-2012.pdf (in french)

[5] Rogers J.N., Rosenberg J.N., Guzman B.J., Oh V.H., Mimbela L.E., Ghassemi A., Betenbaugh M.J., Oyler G.A. & Donohue M.D.A. (2014) Critical analysis of paddlewheel-driven raceway ponds for algal biofuel production at commercial scales. Algal Research 4:76-88.

[6] Beal C.M., Gerber L.N., Sills D.L., Huntley M.E., Machesky S.C., Walsh M.J., Tester J.W., Archibald I., Granados J. & Greene C.H. (2015) Algal biofuel production for fuels and feed in a 100-ha facility: A comprehensive techno-economic analysis and life cycle assessment. Algal Research 10:266-279.

[7] Slade R. & Bauen A. (2013) Micro-algae cultivation for biofuels: Cost, energy balance, environmental impacts and future prospects. Biomass and Bioenergy, 53:29-38. https://doi.org/10.1016/j.biombioe.2012.12.019

[8] Stephenson A.L., Kazamia E., Dennis J.S., Howe C.J., Scott S.A. & Smith A.G. (2010) Life-cycle assessment of potential algal biodiesel production in the United Kingdom: a comparison of raceways and air-lift tubular bioreactors. Energ. Fuel, 24:4062-4077.

[9] In September 2017, SP95-E10 volumes represented 38.5% of gasoline sold in France.

[10] The European Commission also wants to reduce the addition of bioethanol from cereals or beets to gasoline sold in Europe. France remains the leading European producer of bioethanol, with 12 million hectolitres produced each year. Some 300,000 hectares, or 1% of the useful agricultural area, provide both energy and food.

[11] Didderen I.,‎ Destain J. &‎ Thonart P. (2009) Le bioéthanol de seconde génération : La production d’éthanol à partir de biomasse lignocellulosique. Presses Agronomiques Gembloux. 128 pp. (in french)

[12] Vegetable oils cannot be used as such (even when mixed in diesel fuel) to power modern diesel engines. This is why they are “esterified”, i.e. transformed into fatty acid esters, by the chemical reaction of transesterification. These methyl esters of fatty acids can be obtained from: (a) vegetable oils extracted from oil plants: this is referred to as VOME (vegetable oil methyl ester), (b) animal fats: this is referred to as HOME (animal oil methyl ester) and (c) used vegetable edible oils recovered by an identified collection circuit: this is referred to as HOME (used oil methyl ester).

[13] This process should not be confused with methanisation applied in particular to organic waste. It allows the production of methane (or biogas), by anaerobic transformation of biomass using microorganisms.

[14] Delrue F., Li-Beisson Y., Setier P.-A., Sahut C., Roubaud A., Froment A.-K. Peltier G. (2013) Comparison of various microalgae liquid biofuel production pathways based on energetic, economic and environmental criteria. Biores. Technol. 136:205-212.

[15] These perspectives are the subject of research throughout the world and in particular within various European projects (INDALG, IPHYC-H2020, ALGEN, ALGAECAN, ALGAEBIOGAS, etc…).

[16] López Barreiro D., Prins W., Ronsse F & Brilman W. (2012) Hydrothermal liquefaction (HTL) of microalgae for biofuel production: State of the art review and future prospects. Biomass Bioenerg. 53 :113-127

[17]‘t Lam G.P., Vermuë M.H., Eppink M.H.M., Wijffels R.H. & van den Berg C. (2018) Multi-Product Microalgae Biorefineries: From Concept Towards Reality. Trends Biotechnol. 36:216-227. doi: 10.1016/d.tibtech.2017.10.011. Epub 2017 Nov 10.

[18] Bhujade R., Chidambaram M., Kumar A. & Sapre A. (2017) Algae to economically viable low-carbon-footprint oil. Annu. Rev. Chem. Biomol. Eng. 8:335-357.

[19] Koller, M., Muhr, A., Braunegg, G. (2014) Microalgae as versatile cellular factories for valued products. Algal Research 6:52-63.


The Encyclopedia of the Environment by the Association des Encyclopédies de l'Environnement et de l'Énergie (www.a3e.fr), contractually linked to the University of Grenoble Alpes and Grenoble INP, and sponsored by the French Academy of Sciences.

To cite this article: MARECHAL Eric (January 15, 2020), Biofuels: is the future in microalgae?, Encyclopedia of the Environment, Accessed December 21, 2024 [online ISSN 2555-0950] url : https://www.encyclopedie-environnement.org/en/life/biofuels-is-the-future-in-microalgae/.

The articles in the Encyclopedia of the Environment are made available under the terms of the Creative Commons BY-NC-SA license, which authorizes reproduction subject to: citing the source, not making commercial use of them, sharing identical initial conditions, reproducing at each reuse or distribution the mention of this Creative Commons BY-NC-SA license.

生物燃料:微藻是未来的方向吗?

PDF
culture microalgues photobioreacteurs - encyclopedie environnement

  化石燃料(煤、天然气、石油)是否就要用尽?如果化石燃料用尽了我们该如何应对?我们考虑了哪些替代化石燃料的方案?人类社会依赖于从土壤中提取碳氢化合物从而应用到多个仿麦呢,但是有时却会被忽略。交无论是陆地、海洋或者天空中的交通工具,都需要用到汽油或煤油……虽然现在已经产生令人信服的解决方案,让汽车不用汽油作燃料,但人们常说,最后一滴石油将用于驾驶飞机。此外,化石能源还是化学工业(或者说石化工业)的化合物来源,用于制造塑料和其他各种材料,同时也是道路沥青、聚氨酯泡沫和建筑隔热产品的原材料。那么目前开发生物燃料的研究进展如何?我们对这些新兴生物工业部门有何预期呢?

环境百科全书-生物燃料:微藻是未来的方向吗-化石资源的开发
图 1. 化石能源的开发。
A,从美国亚利桑那州凯恩塔煤矿开采的煤炭[来源:Peabody Energy, Inc.拍摄(CC BY 3.0),通过维基共享];B,加拿大艾伯塔油砂开采[来源:Howl Arts Collective拍摄(CC BY 2.0),通过维基共享]:C,爱尔兰海上天然气和石油开采平台[来源:Ian Mantel(CC BY-SA 4.0),通过维基共享]。

  煤炭、原油和天然气田的开发(图1)带来的环境成本已不可持续。这些所谓的“化石能源”已经被宣告枯竭,不过至少还有几十年才会真正用尽。在许多国家,开采煤炭的成本大幅上升,但有一些矿区还在继续开采。石油价格与天然气价格挂钩,但石油的价格还不能完全由其稀缺性或短缺决定,甚至会由于地缘政治原因出现下跌。人们不断在北极或近海等未开发地区发现新的碳氢化合物矿藏。尽管开采成本较高,但从油砂等储量不太丰富的矿藏中开采石油已经可以实现(图1B)。

  一些液态碳氢化合物、页岩气等似乎是潜在的化石燃料新来源,但其开采过程再次对环境造成严重污染。

  因此,寻找化石燃料替代品的“生物燃料”研究非常活跃[1]。为什么呢?本文提供了一些见解,首先分析化石燃料碳氢化合物的概念和分布,然后评估目前正在研究的化石燃料替代方案。

1. 什么是化石燃料碳氢化合物?

  组成原油天然气的有机化合物(碳氢化合物=碳和氢组成的化合物)形成的复杂混合物,根据元素含量(C,H,O等)和这些混合物中分子的平均长度(Cn =碳原子的数目)大致可以确定:

  • 最短的碳链(甲烷CH4,乙烷C2H6,丙烷C3H8和丁烷C4H10)都是气体。
  • 长链(C18H32以下)为液态,大于C19的碳链在室温下为固态。
环境百科全书-生物燃料:微藻是未来的方向吗-石油蒸馏塔操作的图示
图 2. 石油蒸馏塔操作的图示。
最易挥发的分子(例如丁烷气体)在塔顶被低温回收;最重的馏分用作沥青,在塔底被回收。[来源:© Eric Maréchal;未知的照片(GFDL或CC-BY-SA-3.0),通过维基共享]

  因此,这些不同长度的分子可以通过蒸馏过程分离出来,而蒸馏过程是原油精炼的基础(图2)。蒸馏是将不同沸点的液体混合物分离的过程。它使均匀混合物的成分得以分离。小于C8的碳链很容易蒸发,形成一种叫做“石脑油”的液体,可用作溶剂(溶解不溶于水的化合物)。小于C12的碳链沸点比水低。

  碳氢化合物在燃烧时可以释放能量,因此被用作各种发动机的“燃料”。燃烧是一种放热的化学反应,以热量的形式释放能量。化学燃烧反应只有在三种因素结合时才能发生:符合一定比例的燃料、氧化剂和活化能。因此,碳氢化合物的不同,适用的发动机类型也不同。[2]

  例如,汽车燃料的工作温度超过100℃。对于燃料来说,辛烷值的定义通过测量发动机的电阻来确定的,而发动机通过自燃控制,即没有火花塞的干预。辛烷值x表示燃料表现为x%辛烷(C8H18,耐自燃)和(100-x)%庚烷(C7H16,易自燃)的混合物。根据这个定义,纯C8H18溶液的辛烷值为100,纯C7H16溶液的辛烷值为0。这个指标会根据发动机的性能进行优化,并不反映燃料本身所包含的能量值,即燃料的质量取决于发动机类型。

  飞机发动机受到的压力和温度条件截然不同。“煤油”的碳链在C12—C15之间,其次是“柴油”和重型燃料(图2),重型燃料在室温下不会蒸发。大于C20的碳链构成了“石蜡”“焦油”“沥青”(图2)。非线性烃有辛烷值,其中也含有芳香环。辛烷值按以下顺序递增:线性长链烷烃<线性短链烷烃<烯烃(含氧)和环烷烃<支链烷烃和多环芳香烃。煤油的特性是纯度高、沸点低和爆炸风险小、凝固点低和辛烷值高。

  煤与原油、天然气的不同之处在于,煤是由褐煤、煤炭和无烟煤(矿井中发现的三种沉积岩,碳含量逐渐升高)转化而来的固体形式,碳含量更高。这种依赖于温度、压力和氧化还原的缓慢过程叫做碳化。

2. 从生物量到化石燃料

2.1. 化石燃料基本来源于生物

环境百科全书-生物燃料:微藻是未来的方向吗-石炭纪煤块中的植物化石
图 3. 石炭纪煤块中的植物化石。
[来源:James St. John拍摄[CC BY 2.0],通过维基共享]在多孔岩石和煤炭中发现的碳氢化合物来自于活体有机物(主要是植物)的沉积,已有约4亿年的历史](见《原油:生物起源的证据》)

  经过沉积,在温度、压力、氧化等特定条件的作用下,积累在一定地质规模上的植物残骸逐渐转化,形成了目前人类正在开采的矿藏。石炭纪(大约3亿6千万到3亿年前)是一个煤炭资源丰富的地质阶段,侏罗纪(大约2亿到1亿4500万年)和白垩纪(大约1亿4500万年到6千5百万年前)是一个油田资源丰富的地质阶段……因此,人类每天大量燃烧的所有此类碳氢化合物,都是数亿年由于植物经其特有的光合作用缓慢积累的生物量。

2.2. 植物的生物质能来自于光合作用

  生物质由有机物(糖类、脂类、核苷酸、氨基酸等)构成,这些有机物完全来自于光合作用产生的葡萄糖分子。在生态金字塔中,有机物质通过植物产生的葡萄糖进入,因此,植物被称为“初级生产者”(见《什么是生物多样性?》)。

  光合作用分为两个阶段(第一阶段是需要光的“光反应”,第二阶段是不需要光的“暗反应”),通过捕获太阳能来积累有机物质。

  • 在第一阶段中捕获太阳能,并通过“破坏”水分子来释放氧气(O2),捕获的太阳能被转换成两种高量的分子,即最著名的ATP(三磷酸腺苷)和具有“还原能力”的NADPH(烟酰胺腺嘌呤二核苷酸磷酸)。
  • 在光合作用的第二阶段,在ATP和NADPH的协助下,大气中的CO2被捕获并被NADPH还原为葡萄糖(C6H12O6)的前体—磷酸三碳糖(一种三碳磷酸化分子)。

  “代谢”(metabolism)包括了在生命有机体内从葡萄糖开始合成所有分子的所有化学反应。通过这一方式产生的所有有机物质都富含碳和能量。

  生物生长需要摄取生物量,不仅来自物质也来自太阳能,而太阳能是其所有生物功能正常发挥作用的必要条件。有机体通过“呼吸作用”吸收氧气,“分解”有机物,回收部分储存的能量,并将其再次转化为ATP和还原力,在这个过程中,呼吸会释放二氧化碳。

  因此光合作用捕获太阳能,并通过合成葡萄糖(C6H12O6)将其融入CO2中,呼吸作用可以通过释放二氧化碳来回收部分这种能量。C6H12O6的氧化过程与燃烧相似,均可以利用O2并释放CO2,燃烧以热的形式释放能量,因此有人说呼吸作用可以“燃烧”糖。

2.3. 化石燃料的燃烧是二氧化碳的一大来源:简单的计算

  根据树木通过光合作用捕获二氧化碳并通过呼吸作用失去一部分二氧化碳,可以粗略估计得到:生产1kg植物生物量(干重)需要消耗2kg大气中的二氧化碳。根据二氧化碳在大气中的浓度是300—400ppm(百万分之一),可以粗略估计出生产1kg生物量(干重)大约需要3.5吨空气。由于二氧化碳的密度为1.1—1.2 kg/m3,因此需要3375立方米空气中的全部二氧化碳才能产生1kg生物量。

环境百科全书-生物燃料:微藻是未来的方向吗-非凡的橡树
图 4. 非凡的橡树。
这棵橡树生产1kg树木生物量需要消耗2kg大气中的二氧化碳,但燃烧1kg的干木材释放的二氧化碳相当于3000多立方米空气中的二氧化碳含量!这棵橡树干重大约有20吨,燃烧释放的二氧化碳量相当于约6000万立方米的空气中所含的二氧化碳![来源:Larry D. Moore拍摄[CC BY-SA 3.0或GFDL],通过维基共享]

  这个简单的计算结果极为精妙地展现了生物圈中植物世界的独特性和重要性。所有生物质都来自于植物细胞的这种非凡表现,它们从大气中捕获少量的二氧化碳,将其变成固体并积累在沉积物中。这个奇迹的另一面是,当我们1kg木材时,释放的二氧化碳相当于3000立方米空气中的二氧化碳含量(见《生物圈,一个主要的地质角色》)(图4)。

  如果燃烧近期砍伐的木材,排放的二氧化碳与这些树木之前通过光合作用捕获的二氧化碳相抵消,我们可以认为这种平衡是中性的。 但是如果燃烧化石燃料,则会将数亿年缓慢积攒的二氧化碳重新释放到大气层中。大气中充满了来自石炭纪、侏罗纪和白垩纪的二氧化碳,这是工业排放之外的另一大二氧化碳来源,是导致气候变化的重要因素。

3.发展生物燃料: 生物资源、生物分子

  化石燃料燃烧不仅排放了大量的二氧化碳,还产生了各种污染物:在提炼过程中产生的有毒废水和气态残留物、重金属、碳氧化物、氮氧化物、煤烟和细颗粒等(见空气污染物)。在石油衍生物方面,最明显的污染物是不可降解塑料(见海洋塑料污染:第七大陆),小分子衍生物则以内分泌干扰物的形式释放到环境中,影响所有生物。因此对于生物燃料,必须评估其排放的污染分子和温室气体。显然即使我们积极地寻找化石燃料的替代品,生物燃料并不能解决所有问题。

  如果没有化石燃料尤其是石油,我们该怎么办?虽然可以利用太阳能来驾驶轻型飞机,但要在不用煤油的情况下搭载数十名甚至数百名乘客在当前依然难以想象。寻找化石能源替代品还需要研究所有石油衍生品的替代方案,特别是石油化工产品。尊重可持续发展并保证其所处环境的环境平衡的化学被称为绿色化学、可持续化学或可再生化学。然而,这些石化替代品并不保证能降低对环境的影响,绿色化学面临的一个主要挑战是需要符合环境标准。因此,要谈“生物燃料”就必须谈绿色化学

3.1. 生物资源

  • 栽培植物?
环境百科全书-生物燃料:微藻是未来的方向吗-可用于生产生物燃料的糖类或脂类
图 5. 可用于生产生物燃料的糖类(甘蔗,左)或脂类(油菜籽,右)作物的实例。
[来源:左,Phil (CC BY 2.0),通过维基共享;右,Myrabella,通过维基共享]

  开发生物燃料最初的设想是将满足需求的部分农作物转化为生物燃料[3]。在这方面主要考虑两类生化化合物:糖类和脂类(见下文)。巴西等国的农业生产一直朝着这个方向发展,生产用于生物燃料的甘蔗(图5)。

环境百科全书-生物燃料:微藻是未来的方向吗-可用于生产生物燃料的油籽植物
图 6. 可用于生产生物燃料的油籽植物。
A,桐油树:A1,有果实的桐油树(CC-BY-SA-2.5);A2,[来源:Frank Vincentz(GFDL或CC-BY-SA-SA-3.0),维基共享];A3,瓶中为桐油树种子制成的生物柴油[来源:Biswarup Ganguly( GFDL或CC BY 3.0),维基共享];
B,油棕榈:B1,种植在马来西亚的油棕榈(公共领域),[来源:Craig,维基共享];B2,油棕榈的果实 [来源:oneVillage Initiative,(加纳的Jukwa村和棕榈油生产机构)( CC BY-SA 2.0),维基共享];
C,海甘蓝[1] [来源:Kurt Stüber, (GFDL或CC-BY-SA-3.0),通过维基共享]。
在这三种植物中,只有种植海甘蓝能维系环境可持续发展。

  食用油料作物,如油菜籽(图5B)、油棕榈(图6B)或知名度较低的桐油树亚麻荠或麻疯树(图6A)等鲜为人知的物种目前已经已通过作为汽车燃料或航空煤油补充的评估测试进行评估。然而,这样的农业发展模式不能保证会危及动物和人类的对食品的粮食供应需求,并且,该模式下其在在自然环境、化肥和、农药使用等方面的带来环境成本是不可持续[4]。例如,现在已经确定的观点是,专门用于生物燃料生产的农业不能与传统粮食生产农业产生竞争关系。

  第一个折中方案是开发在非耕地中生长的植物,例如海甘蓝(一种类似芥菜的植物),其耗水量和需肥量很少(图6C)。第二个高度成熟的方案是利用农业残余物(从秸秆或残茬到木材废料、动物粪便、作物残留等)。这些农业残余物可以从零开始生产,并与废弃物一起处理,以便通过气化反应提取能源(见下文)。

  • 微藻和微生物?
环境百科全书-生物燃料:微藻是未来的方向吗-硅藻的三维重建
图 7. 硅藻的三维重建。
[来源:照片©Denis Falconet,LPCV,CNRS照片库]

  由于微藻的培养不会与粮食生产农业区形成竞争关系,许多研究实验室和许多工业组织都对微藻(主要是产油微藻)进行了评估。微藻有着无与伦比的生物多样性,既有从“简单”的内共生产生的单细胞生物(绿藻、红藻),也有由进化中亲缘关系远的几个细胞组(见《共生与进化:真核细胞的起源》)经“多重”内共生过程产生的复杂生物(如硅藻,图7)。目前正在考虑开发的物种有小球藻栅藻(绿藻),以及微拟球藻(次级内共生体)。

环境百科全书-生物燃料:微藻是未来的方向吗-培养微藻的露天池塘
图 8. 培养微藻的露天池塘。
池塘中的水通过电动桨轮保持流动。
[来源:JanB46拍摄(CC BY- SA 3.0),通过维基共享]

  要落实该产业的发展,还必须发展与农业相当的配套:藻类养殖。因此有必要评估受气候灾害、污染等影响的室外培育系统(露天池塘,图8)[5][6],或封闭系统(光生物反应器或“PBR”)[7][8]微藻养殖也需要重视水资源管理,尤其应该考虑其污水处理方案。同时,与农业领域相似,需要注意磷酸盐和氮的管理问题。此外还要像其他排放CO2的行业—如水泥行业一样注意CO2排放管理问题。最后要注意收集和提取富含能量的分子

3.2. 生物分子

  • 糖类被大众认识是由于它能被酵母发酵成生物乙醇。自此,人们开始从甘蔗或甜菜中提取最简单的糖或可发酵糖(图9)。通过这种方式生产的生物乙醇可以与化石碳氢化合物混合使用,但含量很低,因为这种生物燃料会损坏发动机。生物乙醇的出现激励了其它生物燃料的发展,因为它通过汽车每天都在使用农业乙醇(含10%乙醇的无铅优质燃料SP95-E10)这个实例,具体地说明了生物燃料的可行性[9]
环境百科全书-生物燃料:微藻是未来的方向吗-可用于生产生物燃料的糖基化合物的三维图示
图 9. 可用于生产生物燃料的糖基化合物的三维图示:蔗糖(由甘蔗或甜菜产生)或葡萄糖通过发酵产生酒精或生物乙醇。黑球为碳原子,红球为氧原子,白球为氢原子。

  如前文所说,农业资源用于生物燃料生产后来被认为不可行[10]。人们开始积极寻找其他可开发利用的糖类:例如,纤维素—植物中难以被利用的聚合糖。这些糖以聚合物的形式聚集在一起,必须被分解才能释放单糖,这个过程在生物化学学科上被称为“解构”。这些聚合糖与一些如木质素等很难解构的分子相连木质纤维素链是开发生物乙醇的新途径[11]。 微藻中也被纳入考虑范围,因为拥有能量更丰富且在绿色化学中更具潜力的分子——脂质。

  • 脂质是最发展前景的一类生物分子,迄今为止对微藻的研究尤为重要。植物或产油微藻的脂质实际上是甘油酯,一种富含被称为“脂肪酸”长碳链的分子。脂肪酸的多种长度与上文(1)中描述的化石燃料碳氢化合物的多种长度相似,最初在植物和油籽中产生的脂肪酸碳链长度为14到18个碳原子(C14—C18),含有少量C12碳原子,它们也可以达到C20—C24甚至更长。含有三种脂肪酸的脂类被称为甘油三酯,形成所谓的
环境百科全书-生物燃料:微藻是未来的方向吗-藻类或油籽中的三酰基甘油通过酯交换反应释放脂肪酸
图 10. 藻类或油籽中的三酰基甘油通过酯交换反应释放脂肪酸。这些脂肪酸(实际上是脂肪酸甲酯)形成了一种接近石油的生物燃料。黑球为碳原子,红球为氧原子,白球为氢原子。

  通过化学酯交换反应可以释放这些脂肪酸,形成接近石油的生物燃料(图10)[12]。 在液体燃料方面,用于发动机尤其是飞机发动机的燃油需要满足某些殊特性质。棕榈油在室温下是固体,而在高温下变成流体和液体,这正是生物燃油所需要达到的特性。因此各项研究旨在寻找双键少的短链脂肪酸来优化燃油中的这种性质。但是植物或产油微藻对这种油的耐受性不佳,并且获得的生物量也不够。因此该研究领域的主要挑战之一是确定一种生物系统,该系统可以大量生产替代化石燃料的生物燃料

  • 环境百科全书-生物燃料:微藻是未来的方向吗-用于生物质热解生产合成气的装置示意图
    图 11. A,生物质热解生产合成气的装置示意图。B,位于奥地利居辛的生物质气化反应工厂。[来源:©EricMarechal;右图:Creative Commons Attribution 2.5 Generic]
    最后也要考虑原始生物质。在废物处理过程中,考虑通过生物化学、化学或热化学手段进行几种类型的转化。这是一个完整的技术发展领域,与生物燃料领域彼此独立,但在此有必要进行回顾。目前正在开发的一种工艺是通过热解和/或气化反应的方法,将干生物质转化为被称作“合成气”的气体(图 11)[13]。 合成气的成分因使用的生物质和生产工艺不同而变化。在20世纪初,质量低劣的合成气又被称为人造气或管道气。在这一领域,生物质与煤炭混合进行共燃也是一种方案。

  时至如今,仍还没有统一且理想的解决方案。在任何情况下,都必须了解发达的农学或生物技术该如何发展并且适应更宏大的总体规划。为此,我们来谈谈相关部门。

4. 未来的能源部门和农艺、生物技术以及绿色化学部门相结合

  目前进行的研究涉及生物资源(特别是微藻)、培养方法收获和提取过程,以及如何将提取的生物分子转化为可随时使用的生物燃料[14]

  在生物资源方面产生了转基因生物的定向进化和生产的问题。在培养方法方面,目前正在研究与水资源管理系统碳排放产业耦合的栽培方法[15]环境影响、磷酸盐和氮的投入量、总体能量平衡可持续性目前正在进行生命周期评估

环境百科全书-生物燃料:微藻是未来的方向吗-用微藻中的生物质生产生物燃料的过程
图 12. 用微藻中的生物质生产生物燃料的过程。
[来源:©EricMarechal]

  与其他可再生能源一样,生物燃料的生产效率低下,然而它的优势在于以生物质的形式储存能量,这可以与非储存型能源生产技术结合,融入到能源结构中。例如,风力涡轮机在有风的时候发电,光伏电板在有阳光的时候发电,这些电能不能被很好地储存,但可能可以用于微藻养殖场照明供电,用于储存低产量的生物质。当前,这种类型的耦合实践之一是通过水热液化处理微藻[16]

  生物质也可以进行精炼[17],分离用于生物燃料的生物分子、用于化妆品或生物医学应用的颜料以及用于动物生产的蛋白质。目前的提取系统具有破坏性,但这种模式因可降低生产成本仍被纳入考虑。

  总之,生物燃料还未成熟至支持整个经济系统的运行[18]。目前的相关研究旨在从经济可行性方面提高质量、产量和工艺。考虑到化石燃料的环境成本,生物燃料的发展不是一种选择,而是一种必然,因此必须找到最佳的解决方案和折中方案。为落实以藻类为基础的农业食品、动物营养、化妆品、生物医学和绿色化学的发展,开发以藻类为基础的生物燃料是其中的一个方面[19]

5. 重要信息

  • 煤炭、原油和天然气的开采带来了不可持续的环境成本。
  • 虽然各项研究正在积极寻找替代化石燃料的生物燃料,但是生物燃料还不足以支撑一个能独立发展的经济体系。
  • 生产生物燃料有两种原料:栽培植物(如甜菜根、菜籽、甘蔗、油棕榈)和微生物(特别是微藻)。
  • 发展专门用于生物燃料生产的农业不能与传统粮食生产农业形成竞争关系。
  • 生产生物燃料主要有两种生化化合物:糖类(用于乙醇生产)和脂类(用于脂肪酸甲酯生产)。
  • 生物质原料也可以用于生产合成气,例如通过热解和/或气化反应。
  • 为发展生物燃料而进行的大量研究包括了以下过程:生物资源的收集(对微藻进行了重要研究)、培养方法、收获和提取过程,以及将提取的生物分子转化为现成的生物燃料。
  • 生物燃料系统的设计必须减少对环境的影响,并且要评估整体能量平衡和可持续性
  • 藻类的生物燃料开发是在食品、动物营养、化妆品、生物医药和绿色化学领域实施藻类解决方案的一个方面。

参考资料及说明

封面照片:光合反应器中培养的微藻(棕色为三角褐指藻,绿色为眼点拟微绿球藻)。[资料来源:©Photo LPCV(CEA/CNRS/UGA/INRA)]

[1] 生物燃料是由植物原料(植物、藻类等)加工而来的燃料。如果该植物原料来自于农业生产(如甜菜、菜籽、甘蔗、向日葵、 油棕榈等),也称为农业燃料。生物燃料被认为是一种可再生能源。欧洲议会和理事会2003年5月8日发布关于推广使用生物燃料或其他可再生燃料的指令“2003/30/EC”,其中将生物燃料定义为“一种由生物质生产并用于运输的液体或气体燃料”。生物质是“农产品、农业废物和残余物(包括动植物物质)、林业和相关工业的生物可降解部分,以及工业和城市废物的生物可降解部分”,Official Journal No L 123 of 17/05/2003 p.0042-0046.

[2] 这些限制对生物燃料也很重要。

[3] 农业燃料类型的生物燃料生产并非不会带来环境影响,有时候甚至带来了重大影响。欧洲设定的生产目标已经被降低,并规定要对生产进行认证,落实可持续发展标准。虽然农业燃料生产是可持续发展轨迹的一部分,但它只有在一定的生产条件下才能从本质上实现可持续。

[4] de Cara S., Goussebaile A., Grateau R., Levert F., Quemener J., Vermont B. (2012) Revue critique des études évaluant l’effet des changements d’affectation des sols sur les bilans environnementaux des biocarburants. Etude réalisée par l’INRA pour l’Ademe; http://www.ademe.fr/sites/default/files/assets/documents/effet-changements-affectation-sols-sur-bilans-environnementaux-biocarburants-2012.pdf (in french)

[5] Rogers J.N., Rosenberg J.N., Guzman B.J., Oh V.H., Mimbela L.E., Ghassemi A., Betenbaugh M.J., Oyler G.A. & Donohue M.D.A. (2014) Critical analysis of paddlewheel-driven raceway ponds for algal biofuel production at commercial scales. Algal Research 4:76-88.

[6] Beal C.M., Gerber L.N., Sills D.L., Huntley M.E., Machesky S.C., Walsh M.J., Tester J.W., Archibald I., Granados J. & Greene C.H. (2015) Algal biofuel production for fuels and feed in a 100-ha facility: A comprehensive techno-economic analysis and life cycle assessment. Algal Research 10:266-279.

[7] Slade R. & Bauen A. (2013) Micro-algae cultivation for biofuels: Cost, energy balance, environmental impacts and future prospects. Biomass and Bioenergy, 53:29-38. https://doi.org/10.1016/j.biombioe.2012.12.019

[8] Stephenson A.L., Kazamia E., Dennis J.S., Howe C.J., Scott S.A. & Smith A.G. (2010) Life-cycle assessment of potential algal biodiesel production in the United Kingdom: a comparison of raceways and air-lift tubular bioreactors. Energ. Fuel, 24:4062-4077.

[9] 2017年9月,法国SP95-E10的销量占总汽油销量的5%。

[10] 欧盟委员会希望可以减少欧洲销售的汽油中添加从谷物或甜菜中提取的生物乙醇。法国仍然是欧洲最大的生物乙醇生产国,每年生产12亿升生物乙醇。大约有30万公顷的土地(占可用农业土地面积的1%)被用于能源和食物的生产。

[11] Didderen I.,‎ Destain J. &‎ Thonart P. (2009) Le bioéthanol de seconde génération : La production d’éthanol à partir de biomasse lignocellulosique. Presses Agronomiques Gembloux. 128 pp. (in french)

[12] 植物油本身(即使与柴油混合)不能用于驱动现代柴油发动机。因此要对植物油进行 “酯化”,即通过酯交换化学反应将其转化为脂肪酸酯。这些脂肪酸甲酯可以从以下物质中获得:(a) 从油料植物中提取的植物油:称为 VOME(植物油甲酯);(b) 动物脂肪,称为 HOME(动物油甲酯); (c) 通过确定的收集路线回收的使用过的植物食用油:称为 HOME(废油甲酯)。

[13] 这一过程可以利用微生物对生物质进行厌氧转化生产甲烷(或沼气),不能与有机废物甲烷化过程混淆。

[14] Delrue F., Li-Beisson Y., Setier P.-A., Sahut C., Roubaud A., Froment A.-K. Peltier G. (2013) Comparison of various microalgae liquid biofuel production pathways based on energetic, economic and environmental criteria. Biores. Technol. 136:205-212.

[15] 这些观点是全世界研究的主题,特别是在各种欧洲项目中(INDALG、IPHYC-H2020、ALGEN、ALGAECAN、ALGAEBIOGAS等)

[16] López Barreiro D., Prins W., Ronsse F & Brilman W. (2012) Hydrothermal liquefaction (HTL) of microalgae for biofuel production: State of the art review and future prospects. Biomass Bioenerg. 53 :113-127

[17] ‘t Lam G.P., Vermuë M.H., Eppink M.H.M., Wijffels R.H. & van den Berg C. (2018) Multi-Product Microalgae Biorefineries: From Concept Towards Reality. Trends Biotechnol. 36:216-227. doi: 10.1016/d.tibtech.2017.10.011. Epub 2017 Nov 10.

[18] Bhujade R., Chidambaram M., Kumar A. & Sapre A. (2017) Algae to economically viable low-carbon-footprint oil. Annu. Rev. Chem. Biomol. Eng. 8:335-357.

[19] Koller, M., Muhr, A., Braunegg, G. (2014) Microalgae as versatile cellular factories for valued products. Algal Research 6:52-63.


The Encyclopedia of the Environment by the Association des Encyclopédies de l'Environnement et de l'Énergie (www.a3e.fr), contractually linked to the University of Grenoble Alpes and Grenoble INP, and sponsored by the French Academy of Sciences.

To cite this article: MARECHAL Eric (March 9, 2024), 生物燃料:微藻是未来的方向吗?, Encyclopedia of the Environment, Accessed December 21, 2024 [online ISSN 2555-0950] url : https://www.encyclopedie-environnement.org/zh/vivant-zh/biofuels-is-the-future-in-microalgae/.

The articles in the Encyclopedia of the Environment are made available under the terms of the Creative Commons BY-NC-SA license, which authorizes reproduction subject to: citing the source, not making commercial use of them, sharing identical initial conditions, reproducing at each reuse or distribution the mention of this Creative Commons BY-NC-SA license.